Lecture 22: Shortest Paths
(CLRS 24.0, 24.3)

June 20th, 2002

1 Shortest Paths

e We will now consider a problem related to minimum spanning trees; shortest paths

— We already discussed how BFS can be used to find shortest paths if the length of a path
is defined to be the number of edges on it

— In general we have weights on edges and we are interested in shortest paths with respect
to the sum of the weights of edges on a path

Example: Finding shortest driving distance between two addresses (lots of www-sites
with this functionality). Note that weight on an edge (road) can be more than just dis-
tance (weight can e.g. be a function of distance, road condition, congestion probability,
etc).

e Formal definition of shortest path: G = (V,E) weighted graph. Weight of path P =<

Vo, V1, V2, - -, v > is w(P) = Y% w(v;_1,v;). Shortest path §(u,v) from u to v has weight

min{w(P) : P is path from u to v} If path exists
00 Otherwise

e Note:

—If P =< u = vg,v1,v2,-+,0 = v > is shortest path from u to v then for all ¢ < k
P =< u =wvg,v1,v9, - ,v; > is shortest path from u to v;

— Shortest path is not necessarily part of minimum spanning tree.

Example: Minimum spanning tree for example graph:

— No (unique) shortest path exists if graph has cycle with negative weight

Example: If we change weight of edge (h,i) to —8, we have a cycle (i,h,g) with negative
weight (—1). Using this we can make the weight of path between a and e arbitrarily low
by going through the cycle several times

On the other hand, the problem is well defined if we let edge (h,7) have weight —7 (no
negative cycles)

— We will only consider graphs with non-negative weights
e Different variants of shortest path problem:

— Single pair shortest path: Find shortest path from u to v
— Single source shortest path (SSSP): Find shortest path from source s to all vertices v € V
— All pair shortest path (APSP): Find shortest path from u to v for all u,v € V

e Note:
— No algorithm is known for computing a single pair shortest path better than solving the

(“bigger”) SSSP problem

— APSP can be solved by running SSSP |V times
4

We will concentrate on SSSP problem

2 SSSP for graphs with non-negative weights—Dijkstra’s algo-
rithm

e Recall Prim’s greedy minimum spanning tree algorithm:

— Grows tree out from source s; repeatedly add minimum edge out of tree
— Correct by “cut theorem”

— Implemented using priority queue on vertices not yet in the tree
e Dijkstra’s greedy algorithm for SSSP works almost the same way:

— Grow set (tree) S of vertices we know the shortest path to; repeatedly add new vertex v
that can be reached from S using one edge. v is chosen as the vertex with the minimal
path weight among paths < s = vg,v1,---v;,v > with v; € S for all j <4

— Implemented using priority queue on vertices in V'\ S.

Dijkstra(s)

FOR each v € V DO
d[v] = 00
INSERT(Q, v, 00)

OD

S=0

d[s] =0

CHANGE(Q, s,0)

WHILE @ not empty DO

u = DELETEMIN(Q)
S =SuU{u}
FOR each e = (u,v) € E with v € V'\ § DO
IF d[v] > d[u] + w(u,v) THEN
d[v] = du] + w(u,v)
CHANGE(Q, v, d[v])
visit[v] = u
FI
OD

OD

e Example:

® — VvetexinS

O — VertexinV\S

e Analysis:

— While loop runs |V| times = we perform |V| DELETEMIN operations

— We perform at most one CHANGE operation for each of the |E| edges

NI
O((|E| +|V])log |E|) = O(|E|log |V]) running time

e Note:

Running time like Prim’s minimal spanning tree algorithm

Algorithm computes shortest path tree (stored using visit[v]) which can be used to find
actual shortest paths

Algorithm works for directed graphs as well
— Like Prim’s algorithm, Dijkstra’s algorithm can be improved to O(|V|log |V |+|E|) using
another heap (Fibonacci heap)

e Correctness:

— We prove correctness by induction on size of S
— We will prove that after each iteration of the while-loop the following invariant holds:

a) v ¢ S = d[v] is length of shortest path from s to v among path of the form

< 8,V0,V1, ...,V U > wWhere v,vo,...,v0; €5
b) v € S = d[v] = d(s,v) (d(s,v) is length of shortest path from s to v)
4
When algorithm terminates (S = V') we have solved SSSP
— Proof:

Invariant trivially holds initially (S = (}). To prove that invariant holds after one iteration
of while-loop, given that it holds before the iteration, we need to prove that after adding
u to S:
a) d[v] correct for all (u,v) € E where v ¢ S
- Easily seen to be true since d[v] explicitly updated by algorithm (all the new
paths to v of the special type go through)
b) d[u] = (s, u)
- Assume d[u] > 0(s,u), that is, the found path is not the shortest

- Consider shortest path to v and edge (x,y) on this path where x € S and y ¢ S
(such an edge must exist since s € S and u ¢ S)

Shortest path from stou
Path fromy to u has weight w

- We chose u such that d[u] was minimized = d[y] > d[u] = w must me < 0 =
contradiction since all weights are non-negative (note that we use that d[y] is
shortest path to y)

3 All pairs shortest path (APSP)—non-negative weights

e In the APSP problem, we want to compute the shortest path between any two vertices
u,v €V

— Note that the output is of size O(|V'|?) so we cannot hope to design a better than O(|V|?)
time algorithm

e We can solve the problem simply by running Dijkstra’s algorithm |V/| times =
O(|V] - |E|log|V]) algorithm

— In the worst case (dense graph) this is O(|V > log |V|)

e We can obtain a much simpler O(|V|?) algorithm by working on adjacency matrix A:
FOR k=1 to |V] do
FOR i =1 to |V| DO
FOR j=1to |V| DO
IF Ali,j] > Ali, k] + Alk, j| THEN
Ali, j| = Ali, k] + Alk, j]
FI
OD
OD

OD

e Correctness:

— We prove correctness by induction

— We will prove that after each iteration of the k-loop the following invariant holds:

After the k’th (out of |V|) iterations, A[i, j] contains the length of shortest path from v;
to v; that (apart from v; and v;) only contains vertices of index at most k

U
When algorithm terminates we have solved APSP

— Proof:

« Invariant holds initially (we start with adjacency matrix A).

* When “adding” vertex with index k we explicitly check all new paths between v;
and v; through vy, for all [V|? pairs.

e Note:

— We can easily produce adjacency-matrix from adjacency list in O(]V?|) time

— Algorithm runs in O(|V[?) time, even if the graph is sparse. Using algorithm based on
Dijkstra’s algorithm we will get much better performance for sparse graphs.

— Using more efficient heap, algorithm based on Dijkstra’s algorithm can be improved to
O(IVPlog [V] + V] - |E]) = O(IV]?)

