Lecture 14: Dynamic Programming
(CLRS 15.2-15.3)

June 6th, 2002

1 Dynamic programming

e We have previously discussed how divide-and-conquer can often be used to obtain efficient
algorithms.

— Examples: matrix multiplication, merge-sort, quick-sort,....

e Sometimes direct use of divide-and-conquer does not yield efficient algorithms—in fact, some-
times it results in really bad algorithms.

e Today we will discuss a technique which can often be used to improve upon an inefficient
divide-and-conquer algorithm.

— The technique is called ”Dynamic programming”. It is neither especially 'dynamic’ nor
especially 'programming’ related.

— We will discuss dynamic programming by looking at an example.

1.1 Matrix-chain multiplication

e Problem: Given a sequence of matrices Ay, A, As, ..., Ay, find the best way (using the minimal
number of multiplications) to compute their product.
— Isn’t there only one way? ((---((A4y - Az2)-As)---) - Ayp)

— No, matrix multiplication is associative.
eg. Ay (Ay-(As- (- (Ap—1-4,)--+))) yields the same matrix.

— Different multiplication orders do not cost the same:

x Multiplying p x ¢ matrix A and ¢ X r matrix B takes p - ¢ - r multiplications; result
is a p X r matrix.

* Consider multiplying 10 x 100 matrix A; with 100 x 5 matrix Ay and 5 x 50 matrix
As.
— (A1 - Ag) - A3 takes 10-100 -5+ 10 - 5 - 50 = 7500 multiplications.
— Ay - (Ag - As) takes 100 -5 - 50 + 10 - 50 - 100 = 75000 multiplications.

e In general, let A; be p;_1 X p; matrix.
— Ay, Ay, As, ..., A, can be represented by pg, p1, P2, 03, - Pn
e Let m(i,j) denote minimal number of multiplications needed to compute A; - A;yq--- A;

— We want to compute m(1,n).

e Divide-and-conquer solution/recursive algorithm:

— Divide into j — ¢ — 1 subproblems by trying to set parenthesis in all j —¢ — 1 positions.
(e.g. (Ai-Aip1---Ag) - (Agg1--- Aj) corresponds to multiplying p;—1 X p and py X p;
matrices.)

— Recursively find best way of solving sub-problems. (e.g. best way of computing A; -
Ajyr-- Ag and Apyq - Apyo- - Aj)

— Pick best solution.

e Algorithm expressed in terms of m(i, 5):

mi gy =10 Ifi=j
P mingepe i {m(i, k) +mk +1,5) +pictpeopyy 1i <

e Program:

MATRIX-CHAIN(%, j)
IF 4 = 5 THEN return 0
m(i,j) = oo
FOR k=17 TO 57 —1DO
q = MATRIX-CHAIN(%, k) + MATRIX-CHAIN(k + 1, 5) 4+pi—1 - Pk - Dj
IF ¢ <m(i,j) THEN m(i,j) = ¢
OD
Return m(i,)
END MATRIX-CHAIN

Return MATRIX-CHAIN(1,n)

e Running time:

i
L

T(n) = Y (T(k)+T(n—k)+O(1))

I

]

> T
L

T(k) + O(n)

b
Il
—

2-T(n—1)
2.2.T(n—2)
2.-2-2...

27’!»

(A\VAR VARV

e Problem is that we compute the same result over and over again.

— Example: Recursion tree for MATRIX-CHAIN(1,4)

1,4

11 24 12 34 13 4.4

22 34 23 44 11 22 33 44 11 23 12 33

/] /

33 44 22 33 22 33 11 22

We for example compute MATRIX-CHAIN(3,4) twice

e Solution is to "remember” values we have already computed in a table—memorization

MATRIX-CHAIN(3, j)

IF ¢ = j THEN return 0

IF m(i,j) < oo THEN return m(i,j) /* This line has changed */

FOR k=1itoj—1DO
q = MATRIX-CHAIN(%, k) + MATRIX-CHAIN(k + 1, j)+pi—1 - pi. - D§
IF ¢ < m(i,j) THEN m(i,75) = ¢

OD

return m(%, j)

END MATRIX-CHAIN

FOR i = 1 to n DO
FOR j =i to n DO
m(i,j) = oo
OD
OD

return MATRIX-CHAIN(1,n)

e Running time:

— ©(n?) different calls to MATRIX-CHAIN(3,).
— The first time a call is made it takes O(n) time, not counting recursive calls.

— When a call has been made once it costs O(1) time to make it again.

4
O(n?) time

— Another way of thinking about it: ©(n?) total entries to fill, it takes O(n) to fill one.

1.2 Alternative view of Dynamic Programming

e Often (including in the book) dynamic programming is presented in a different way; As filling
up a table from the bottom.

e Matrix-chain example: Key is that m(i,j) only depends on m(i, k) and m(k + 1,5) where
i <k < j = if we have computed them, we can compute m(3, j)

— We can easily compute m(i,4) for all 1 <i <n (m(i,i) =0)

— Then we can easily compute m(i,i 4+ 1) forall 1 <i<n —1
m(i,i+1) =m(i,i) + m(i+ 1,0+ 1) + pi—1 - pi - Pita

— Then we can compute m(i,i+2) for all 1 <i<n—2
m(i,1+2) = min{m(i,7) + m(i + 1,7+ 2) + pi—1 - pi - Pir2, m(i,i + 1) +m(i + 2,1+ 2) +
Pi—1 " Pit1 Piv2}

— Until we compute m(1,n)

— Computation order:

1| 1 2|3 |4|5 6|7

2 1112|3456 — Computation order
' 3 112 |3|4]5
| 4 12|34

5 1123

6 1|2

7 1

e Program:
FOR i =1 ton DO
m(i,i) =0

OD
FORI=1ton—-1DO

FOR i=1ton—1DO
j=i+l
m(i,j) = oo
FOR k =1 to j — 1 DO
q=m(i,k) + m(k +1,j) +pi—1 - pr - pj
IF ¢ < m(i,j) THEN m(i,5) =¢q
OD
OD

OD

e Analysis:
— O(n?) entries, O(n) time to compute each = O(n?).
e Note:

— I like recursive (divide-and-conquer) thinking.
— Book seems to like table method better.

— Tlike divide-and-conquer because one does not need to get new idea (write new program)—
just use table!

