
Lecture 6: Expected Running Time of Quick-Sort
(CLRS 7.3-7.4, (C.2))

May 23rd, 2002

1 Quick-sort review

• Last time we discussed quick-sort.

– Quick-Sort is ”opposite” of merge-sort

– Obtained using divide-and-conquer

• Abstract algorithm

– Divide A[1...n] into subarrays A′ = A[1..q − 1] and A” = A[q + 1...n] such that all
elements in A” are larger than A[q] and all elements in A′ are smaller than A[q].

– Recursively sort A′ and A”.

– (nothing to combine/merge. A already sorted after sorting A′ and A”)

• Pseudo code:

Partition(A, p, r)
x = A[r]
i = p − 1
FOR j = p TO r − 1 DO

IF A[j] ≤ x THEN

i = i + 1
Exchange A[i] and A[j]

FI

OD
Exchange A[i + 1] and A[r]
RETURN i + 1

Quicksort(A, p, r)
IF p < r THEN

q=Partition(A, p, r)

Quicksort(A, p, q − 1)

Quicksort(A, q + 1, r)

FI

Sort using Quicksort(A, 1, n)

1

• Analysis :

– Partition runs in Θ(r − p) time.

– If array is always partitioned nicely in two halves (partition returns q = r−p
2), we have

the recurrence T (n) = 2T (n/2) + Θ(n) ⇒ T (n) = Θ(n lg n).

– But in the worst case, partition always returns q = p (when input is sorted) and in
this case we get the recurrence T (n) = T (n − 1) + T (1) + Θ(n) ⇒ T (n) = Θ(n2)
What’s maybe even worse is that the worst-case happens when the data is already sorted.

• Quick-sort “often” perform well in practice and last time we started trying to justify this
theoretically.

– We saw that even if all the splits are relatively bad (we looked at the case 9
10n, 1

10n) we
still get worst-case running time O(n log n).

– To justify it further we define average and expected running time.

2 Average and Expected Running Time (Randomized Algorithms)

• We are normally interested in worst-case running time of an algorithm, that is, the maximal
running time over all input of size n

T (n) = max|X|=n T (X)

• We are sometimes interested in analyzing the average-case running time of an algorithm, that
is, the expected value for the running time, over all input of size n

Ta(n) = E|X|=n[T (n)] =
∑

|X|=n T (X) · Pr[X]

• The problem is that we often don’t know the probability Pr[X] of getting a particular input
X.

– Sometime we assume that all possible inputs are equally likely, but thats often not very
realistic in practice.

• Instead of using average case running time we therefore consider what we call randomized
algorithms, that is, algorithms that make some random choices during their execution

– Running time of normal deterministic algorithm only depend on he input configuration.

– Running time of randomized algorithm depend not only on input configuration but also
on the random choices made by the algorithm.

– Running time of a randomized algorithm is not fixed for a given input!

• We are often interested in analyzing the worst-case expected running time of a randomized
algorithm, that is, the maximal of the average running times for all inputs of size n

Te(n) = max|X|=n E[T (X)]

2

3 Randomized Quick-Sort

• We could analyze quick-sort assuming that we are sorting numbers 1 through n and that all
n! different input configurations are equally likely.

– Average running time would be Ta(n) = O(n log n).

• The assumption that all inputs are equally likely are not very realistic (data tend to be
somewhat sorted).

• We can enforce that all n! permutations are equally likely by randomly permuting the input
before the algorithm

– Most computers have pseudo-random number generator random(1, n) returning “ran-
dom” number between 1 and n

– Using pseudo-random number generator we can generate random permutation (all n!
permutations equally likely) in O(n) time:
Choose element in A[1] randomly among elements in A[1..n], choose element in A[2]
randomly among elements in A[2..n], choose element in A[3] randomly among elements
in A[3..n], and so on.
(Note: Just choosing A[i] randomly among elements A[1..n] for all i will not give random
permutation!)

• Alternatively we can modify Partition sightly and exchange last element in A with random
element in A before partitioning

RandPartition(A, p, r)
i=Random(p, r)
Exchange A[r] and A[i]
RETURN Partition(A, p, r)

RandQuicksort(A, p, r)
IF p < r THEN

q=RandPartition(A, p, r)

RandQuicksort(A, p, q − 1)

RandQuicksort(A, q + 1, r)

FI

3

4 Expected Running Time of Randomized Quick-Sort

• Running time of RandQuicksort is dominated by the time spent in Partition procedure.

• Partition is called n times

– The pivot element x is not included in any recursive calls.

• One call of Partition takes O(1) time plus time proportional to the number of iterations of
FOR-loop.

– In each iteration of FOR-loop we compare an element with the pivot element.

⇓
If X is the number of comparisons A[j] ≤ x performed in Partition over the entire execution
of RandQuicksort then the running time is O(n + X).

• To analyze the expected running time we need to compute E[X]

– To compute X we use z1, z2, . . . , zn to denote the elements in A where zi is the ith
smallest element. We also use Zij to denote {zi, zi+1, . . . , zj}.

– Each pair of elements zi and zj are compared at most ones (when either of them is the
pivot)
⇓
X =

∑n−1
i=1

∑n
j=i+1 Xij where

Xij =

{
1 If zi compared to zi

0 If zi not compared to zi

⇓
E[X] = E

[∑n−1
i=1

∑n
j=i+1 Xij

]
=

∑n−1
i=1

∑n
j=i+1 E[Xij]

=
∑n−1

i=1

∑n
j=i+1 Pr[zi compared to zj]

– To compute Pr[zi compared to zj] it is useful to consider when two elements are not
compared.

Example: Consider an input consisting of numbers 1 through n.
Assume first pivot it 7 ⇒ first partition separates the numbers into sets {1, 2, 3, 4, 5, 6}
and {8, 9, 10}.
In partitioning, 7 is compared to all numbers. No number from the first set will ever
be compared to a number from the second set.

In general, once a pivot x, zi < x < zj , is chosen, we know that zi and zj cannot later
be compared.
On the other hand, if zi is chosen as pivot before any other element in Zij then it is
compared to each element in Zij . Similar for zj .

In example: 7 and 9 are compared because 7 is first item from Z7,9 to be chosen as
pivot, and 2 and 9 are not compared because the first pivot in Z2,9 is 7.

Prior to an element in Zij being chosen as pivot, the set Zij is together in the same
partition ⇒ any element in Zij is equally likely to be first element chosen as pivot ⇒
the probability that zi or zj is chosen first in Zij is 1

j−i+1

⇓
Pr[zi compared to zj] = 2

j−i+1

4

– We now have:
E[X] =

∑n−1
i=1

∑n
j=i+1 Pr[zi compared to zj]

=
∑n−1

i=1

∑n
j=i+1

2
j−i+1

=
∑n−1

i=1

∑n−i
k=1

2
k+1

<
∑n−1

i=1

∑n−i
k=1

2
k

=
∑n−1

i=1 O(log n)
= O(n log n)

• Next time we will see how to make quick-sort run in worst-case O(n log n) time.

5

