Lecture 5: Master Method and Quick-Sort

(CLRS 4.3-4.4 (read this note instead), 7.1-7.2)

May 22nd, 2002

1 Master Method (recurrences)

e We have solved several recurrences using substitution and iteration.
e Last time we solved several recurrences of the form T'(n) = aT'(n/b) + n¢ (T(1) =1).

— Strassen’s algorithm = T'(n) = 7T(n/2) + n? (a = 7,b =2, and ¢ = 2)
— Merge-sort = T'(n) =2T(n/2) +n (a=2,b=2, and ¢ = 1).

It would be nice to have a general solution to the recurrence T'(n) = aT'(n/b) +n

e We do!
T(n)=aT (})+n° a>1b>1,c>0
4
O(n'osr @) a>b°
T(n) =13 O©(n‘logyn) a=1>b°
O(n°) a < b°

Proof (Iteration method)

T(n) = aT (%) +n°
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Recall geometric sum Y p_, zk = L_lfl =0O(z")
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e

a=begt=1=2" " (8) =" 1 = 0(log,n)
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e Note: Book states and proves the result slightly differently (don’t read it).

1.1 Other recurrences

Some important/typical bounds on recurrences not covered by master method:
e Logarithmic: O(logn)

— Recurrence: T'(n) =1+ T(n/2)
— Typical example: Recurse on half the input (and throw half away)
— Variations: T'(n) =1+ T'(99n,/100)

e Linear: O(N)

— Recurrence: T'(n) =1+T(n—1)

— Typical example: Single loop

— Variations: T'(n) =1+27T(n/2),T(n) =n+1T(n/2),T(n) =T(n/5)+T(7Tn/10+6) +n
e Quadratic: ©(n?)

— Recurrence: T'(n) =n+T(n —1)
— Typical example: Nested loops

e Exponential: ©(2")

— Recurrence: T'(n) = 2T (n — 1)

2 Quick-sort

e We previously saw how divide-and-conquer can be used to design sorting algorithm—Merge-
sort

— Partition n elements array A into two subarrays of n/2 elements each
— Sort the two subarrays recursively

— Merge the two subarrays

Running time: T'(n) = 2T (n/2) + ©(n) = T(n) = ©(nlogn)



e Another possibility is to used the “opposite” version of divide-and-conquer—Quick-sort
— Partition A[l...n] into subarrays A’ = A[l..q] and A” = A[g+1...n] such that all elements
in A” are larger than all elements in A’.
— Recursively sort A’ and A”.
— (nothing to combine/merge. A already sorted after sorting A’ and A”)
If ¢ = n/2 and we divide in ©(n) time, we again get the recurrence T'(n) = 27'(n/2) + ©(n)
for the running time = T'(n) = O(nlogn)
The problem is that it is hard to develop partition algorithm which always divide A in two

halves

e Pseudo code for Quick-sort:

QUICKSORT(A, p,r)
IF p < r THEN

q=PARTITION(A, p,7)
QUICKSORT(A, p,q — 1)
QUICKSORT (A, ¢+ 1,7)

FI

Sort using QUICKSORT(A, 1,n)

PARTITION(A, p, 1)
x = Alr]
i=p—1
FOR j=p TO r—-1DO
IF A[j] < 2 THEN
i=1i+1
Exchange A[i] and A[j]
FI
OD
Exchange A[i + 1] and A|r]
RETURN 7+ 1

e PARTITION runs in time ©(n)



e Correctness:

— Clear if PARTITION divides correctly

— Example:

|2 8713564 iw0j
2|8 7 13 5 6 4 imj=
28|71 3 5 6 4  i=1,j=3
2|8 7|1 3 5 6 4  i=1,j=4
2 1|7 8|3 5 6 4 i=2j=
2 1 3|8 7|5 6 4  i=3j=6
2 1 3|8 7 5|6 4  i=3j=7
2 1 3|8 7 5 6|4  i=3j=8
21 34|75 68 o4

— PARTITION can be proved correct (by induction) using the loop invariant:
x Akl <z forp <k <i
« Akl >z fori+1<k<j—1
x Alk]| =x for k=r

e Running time depends on how well PARTITION divides A.

— In the example it does reasonably well.
— In the worst case ¢ is always p and the running time becomes T'(n) = O(n) + T(1) +
T(n—1) = T(n) = 0(n?).
x and what is maybe even worse, the worst case is when A is already sorted.
e So why is it called ”quick”-sort? Because it "often” performs very well—can we theoretically
justify this?
— Even if all the splits are relatively bad, we get ©(nlogn) time:

x Example: Split is l%n, l—lon.
T(n) = T(55n) + T(15n) +n

Solution?
Guess: T'(n) < cnlogn
Induction
T(n) = T(—xn)+T(n)+
n) = 1On 10n n
9cn In cn n
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IN

9
enlogn — n(clog 10 — 1—(C)log9 -1)

T(n) < cnlogn if clog 10 — {5 log9 — 1 > 0 which is definitely true if ¢ > 55



— So, in other words, if just the splits happen at a constant fraction of n we get ©(nlgn)—
or, its almost never bad!

e Next time we will further justify the good practical performance by looking at average case
running time.



