Lecture 3: Summations and Recurrences
(CLRS A, 4.1)

May 20th, 2002

1 Review
e Asymptotic growth: O,, ©

— We often think of f(n) = O(g(n)) as corresponding to f(n) < g(n).
Similarly, f(n) = ©(g(n)) corresponds to f(n) = g(n)
Similarly, f(n) = Q(g(n)) corresponds to f(n) > g(n)

— One can also define o and w
x f(n) =o(g(n)) corresponds to f(n) < g(n)
* f(n) =w(g(n)) corresponds to f(n) > g(n)

e Growth rate of standard functions:

— polynomials versus exponentials: lim, (’;—Z =0, for any ¢ > 1,b > 0.

— polynomials versus polylogarithmics: lim,, s loi(;” =0, for any a,b > 0.

1.1 Log’s

e Base 2 logarithm comes up all the time (from now on we will always mean logyn when we
write logn).

— Number of times we can divide n by 2 to get to 1 or less.

— Number of bits in binary representation of n.

Inverse function of 2" =2-2-2---2 (n times).
— Way of doing multiplication by addition: log(ab) = log(a) + log(b)
e Note:

logy, n

— log,n = Togy @

—logn << y/n<<n

2 Summations

When analyzing insertion-sort we used

Y1 k=14+2434---+n = % = 0O(n?) | (Arithmetic series)

How can we prove this?

e Asymptotic:
Often good estimates can be found by using the largest value to bound others:
Shoik <Yioin=n-3p_1=n"=0(n?
Another trick: Splitting the sum:

Sh k=0 ke D k> AT 04 s k> (3)2 = Q).
U
Siik = 6(n?)

e Precise (proof by induction!):

— Basis: n=1= i, =1
n(nt+l) _ 1.2 _ 1

2 2
— Induction:
. +1
Assume it holds for n: Y7 k = ”(”T)

Show it holds for n + 1: Y34 k= 701“)2("”) =1in?+3n+1
Proof:

n+1

ko= f:k+(n+1)
k=1 k=1
n(n+1)

= —5—~+M0+1)

1 1
= §n2—|—§n+n+1

1 3
= §n2+§n+1

In general we can prove that | 7, k% = ©(nd*!)

Another important sum: | >}, 2 =14z+22+ 2" = xn;_l;l = O(a2™) |(Geometric series)

e Proof by induction:

— Basiss n=1= YI_ j2fF=1+z

ntlo1 _ 22-1 _ (eD(z=1) _
e e T w1 —rtl
— Induction:
. — ozt
Assume holds for n: Y7_ga% = £
i . +1 .k _ z"t21
Show it holds for n + 1: ZZ:O Tt = ‘”xT
Proof:
Tl+1 n
Z of = Z ak 4 gt
k=0 k=0
_ anrl -1 N xn-}—l
r—1
B CCTH_I -1 4 .’En+1($ o 1)
N r—1
x”+1 — 14 xn—f—? _ xn—f—l
N r—1
a2 — 1
N r—1

e Asymptotic (we don’t need to know result to do induction!):

Consider for example that we want to prove that 37, 3% = O(3%), that is, that >_7_, 3F < 3"
for some c.

— Basiss n=1= Y 03°=1+3=4
c3l =¢3
Ok if ¢ > 4/3
— Induction:
Assume holds for n: Y°7_ 3% < 3"
Show holds for n + 1: Y7t 3F < ¢3n+1

Proof:
n+1 n
Z 3]€ — Z 3]€ + 3n+1
k=0 k=0
C37’l + 3Tl+1
= 3""N(1/341/¢)
< C3n+1

If 1/3+ 1/c < 1 which holds if ¢ > 3/2

Another important sum: | S0 + =1+ +1 4.+

= O(logn) | (Harmonic Series)

3 Recurrences

e Last time we discussed divide-and-conquer algorithms

Divide and Conquer

To Solve P:
1. Divide P into smaller problems P, Py, Ps.....Py.
2. Congquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P, ...P; into solution for P.

e Analysis of divide-and-conquer algorithms leads to recurrences.
e Merge-sort lead to the recurrence T'(n) = 27'(n/2) +n

O(1) Ifn=1

T(5)+T(5])+6(m) Ifn>1

— but we will often cheat and just solve the simple formula (equivalent to assuming that
n = 2F for some constant k, and leaving out base case and constant in ©).

— or rather, T'(n) = {

3.1 Substitution method

e Idea: Make good guess and prove by induction.
e Lets solve T'(n) = 2T(n/2) + n using substitution

— Guess T'(n) < cnlogn for some constant ¢ (that is, T'(n) = O(nlogn))
— Proof:

* Basis: Function constant for small constant n

* Induction:
Assume holds for n/2: T'(n/2) < c% log 5
Show holds for n: T'(n) < cnlogn

Proof:
T(n) = 2T(n/2)+n
< 2(0% log g) +n
n

= cnlog§ +n

= cnlogn —cnlog2+n

= cnlogn—cn+n
Sookife>1

e T'(n) =Q(nlogn) can be proved similarly.
e How do we make a good guess?

— Something of an art!

— Try different bounds (e.g. £2(n) easy, show O(n?) = guess O(nlogn))

e Note: changing variables can sometimes help

— Example: Solve T'(n) = 2T (\/n) + logn

Let m =logn = 2m = n = /n = 2"/2
T(n) =2T(y/n)+logn = T(2™) = 2T(2m/2) +m

Let S(m) =T(2™)
T(2m) = 2T(2™/2) + m = S(m) = 25(m/2) + m
= S(m) = O(mlogm)
= T(n) =T(2™) = S(m) = O(mlogm) = O(log nloglogn)

e Next time we will discuss another method for solving recurrences.

