
Lecture 2: Divide-and-Conquer and

Growth of Functions
(CLRS 2.3,3)

May 17th, 2002

1 Designing Good Algorithms: Divide and Conquer/Mergesort

1.1 Divide-and-conquer

• Last time we discussed insertion sort

– We introduced RAM model of computation and discussed its limitations.

– We analyzed insertion sort in the RAM model

∗ Best-case k1n − k2.
∗ Worst-case (and average case) k3n

2 + k4 − k5

– We discussed how we are normally only interested in growth of running time:

∗ Best-case linear in n (∼ n), worst-case quadratic in n (∼ n2).

• Can we design better than n2 sorting algorithm?

• We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:

1. Divide P into smaller problems P1, P2, P3.....Pk.

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2, ...Pk into solution for P.

1.2 Merge-Sort

• Using divide-and-conquer, we can obtain a merge-sort algorithm.

– Divide: Divide n elements into two subsequences of n/2 elements each.

– Conquer: Sort the two subsequences recursively.

– Combine: Merge the two sorted subsequences.

• Assume we have procedure Merge(A, p, q, r) which merges sorted A[p..q] with sorted A[q+1....r]
in (r − p) time.

1

• We can sort A[p...r] as follows (initially p=1 and r=n):

Merge Sort(A,p,r)

If p < r then

q = b(p + r)/2c
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

Example:

125 4 6 3 2 6

1 2 2 3 4 5 6 6

2 4 5 6 1 2 3 6

2 5 4 6 1 3 2 6

125 4 6 3 2 6

4

5 4 6 1 3 2 62

1 25 3 62 6

5 2 4 6 1 3 2 6

1.3 Correctness

• Induction on n

– Easy assuming Merge() is correct!

2

1.4 Analysis

• To simplify things, let us assume that n is a power of 2, i.e n = 2k for some k.

• Running time of the procedure can be analyzed using a recurrence equation/relation.

T (n) ≤ c1 + T (n/2) + T (n/2) + c2n

≤ 2T (n/2) + c3n

⇓
T (n) ≤ c1n log2 n as we will see later.

• We can also get n log2 n bound by noticing that the recursion tree has depth log2 n and that
linear time is spent on each level.

• Note:

– We really have T (n) = c4 if n = 1

– If n 6= 2k things can be complicated (We will often assume n = 2k to avoid complicated
cases).

1.5 Log’s

• Base 2 logarithm comes up all the time (from now on we will always mean log2 n when we
write log n).

– Number of times we can divide n by 2 to get to 1 or less.

– Number of bits in binary representation of n.

– Inverse function of 2n = 2 · 2 · 2 · · · 2 (n times).

– Way of doing multiplication by addition: log(ab) = log(a) + log(b)

• Note:

– loga n = logb n
logb a

– log n <<
√

n << n

1.6 Algorithms matter!

• Sort 10 million integers on

– 1 GHZ computer (1000 million instructions per second) using 2n2 algorithm.

– 100 MHz computer (100 million instructions per second) using 50n log n algorithm.

• Supercomputer : 2·(107)2 inst.
109 inst. per second

= 200000 seconds ≈ 55 hours.

• Personal computer : 50·107·log 107 inst.
108 inst. per second < 50·107·7·3

108 = 5 · 7 · 3 = 105 seconds.

3

2 Asymptotic Growth

• In the insertion-sort example we discussed that when analyzing algorithms we are

– interested in worst-case running time as function of input size n

– not interested in exact constants in bound

– not interested in lower order terms

• A good reason for not caring about constants and lower order terms is that the RAM model
is not completely realistic anyway (not all operations cost the same)

⇓

• We want to express rate of growth of standard functions:

– the leading term with respect to n

– ignoring constants in front of it

k1n + k2 ∼ n
k1n log n ∼ n log n
k1n

2 + k2n + k3 ∼ n2

• We also want to formalize e.g. that a n log n algorithms is better than a n2 algorithm.

⇓

• O-notation (Big-O)

– you have probably all seen it intuitively defined but we will now define it more carefully.

2.1 O-notation (Big-O)

O(g(n)) = {f(n) : ∃ c, n0 > 0 such that f(n) ≤ cg(n) ∀n ≥ n0}

• O(·) is used to asymptotically upper bound a function.

• O(·) is used to bound worst-case running time.

n0

cg(n)

f(n)

4

• Examples:

– 1/3n2 − 3n ∈ O(n2) because 1/3n2 − 3n ≤ cn2 if c ≥ 1/3 − 3/n which holds for c = 1/3
and n > 1.

– k1n
2 + k2n + k3 ∈ O(n2) because k1n

2 + k2n + k3 < (k1 + |k2| + |k3|)n2 and for c >
k1 + |k2| + |k3| and n ≥ 1, k1n

2 + k2n + k3 < cn2.

– k1n
2 + k2n + k3 ∈ O(n3) as k1n

2 + k2n + k3 < (k1 + k2 + k3)n3 (Upper bound!).

• Note:

– When we say “the running time is O(n2)” we mean that the worst-case running time is
O(n2) — best case might be better.

– Use of O-notation often makes it much easier to analyze algorithms; we can easily prove
the O(n2) insertion-sort time bound by saying that both loops run in O(n) time.

– We often abuse the notation a little:

∗ We often write f(n) = O(g(n)) instead of f(n) ∈ O(g(n)).
∗ We often use O(n) in equations: e.g. 2n2 + 3n + 1 = 2n2 + O(n) (meaning that

2n2 + 3n + 1 = 2n2 + f(n) where f(n) is some function in O(n)).
∗ We use O(1) to denote constant time.

2.2 Ω-notation (big-Omega)

Ω(g(n)) = {f(n) : ∃ c, n0 > 0 such that cg(n) ≤ f(n) ∀n ≥ n0}

• Ω(·) is used to asymptotically lower bound a function.

f(n)

n0

cg(n)

• Examples:

– 1/3n2 − 3n = Ω(n2) because 1/3n2 − 3n ≥ cn2 if c ≤ 1/3 − 3/n which is true if c = 1/6
and n > 18.

– k1n
2 + k2n + k3 = Ω(n2).

– k1n
2 + k2n + k3 = Ω(n) (lower bound!)

5

• Note:

– When we say “the running time is Ω(n2)”, we mean that the best case running time is
Ω(n2) — the worst case might be worse.

• Insertion-sort:

– Best case: Ω(n)

– Worst case: O(n2)

– We can also say that the worst case running time is Ω(n2) ⇒ worst case running time
is “precisely” n2.

2.3 Θ-notation (Big-Theta)

Θ(g(n)) = {f(n) : ∃ c1, c2, n0 > 0 such that c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

• Θ(·) is used to asymptotically tight bound a function.

n0

c g(n)

2

1

f(n)

c g(n)

f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n))

• Examples:

– k1n
2 + k2n + k3 = Θ(n2)

– worst case running time of insertion-sort is Θ(n2)

– 6n log n +
√

n log2 n = Θ(n log n):

∗ We need to find n0, c1, c2 such that c1n log n ≤ 6n log n +
√

n log2 n ≤ c2n log n for
n > n0

c1n log n ≤ 6n log n+
√

n log2 n ⇒ c1 ≤ 6+ log n√
n

. Ok if we choose c1 = 6 and n0 = 1.

6n log n +
√

n log2 n ≤ c2n log n ⇒ 6 + log n√
n

≤ c2. Is it ok to choose c2 = 7? Yes,
log n ≤ √

n if n ≥ 2.
∗ So c1 = 6, c2 = 7 and n0 = 2 works.

6

• Note:

– We often think of f(n) = O(g(n)) as corresponding to f(n) ≤ g(n).

– Similarly, f(n) = Θ(g(n)) corresponds to f(n) = g(n)

– Similarly, f(n) = Ω(g(n)) corresponds to f(n) ≥ g(n)

– One can also define o and ω

∗ f(n) = o(g(n)) corresponds to f(n) < g(n)
∗ f(n) = ω(g(n)) corresponds to f(n) > g(n)

2.4 Growth rate of standard functions

• Book introduces standard functions in section 2.2 (we will introduce them as we need them):

– Polynomial of degree d: p(n) =
∑d

i=1 ai · ni where a1, a2, . . . , ad are constants (and
ad > 0). p(n) = Θ(nd)

• “Growth order”: log log n, log n,
√

n, n, n log log n, n log n, n log2 n, n2, n3, 2n

– Growth rate of polynomials versus exponentials: limn→∞ nb

an = 0.

7

