1 Designing Good Algorithms: Divide and Conquer/Mergesort

1.1

1.2

Lecture 2: Divide-and-Conquer and

Growth of Functions
(CLRS 2.3,3)

May 17th, 2002

Divide-and-conquer
e Last time we discussed insertion sort

— We introduced RAM model of computation and discussed its limitations.
— We analyzed insertion sort in the RAM model
x Best-case kin — k.
* Worst-case (and average case) kgn? + ky — ks
— We discussed how we are normally only interested in growth of running time:

* Best-case linear in n (~ n), worst-case quadratic in n (~ n?).
e Can we design better than n? sorting algorithm?

e We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:
1. Divide P into smaller problems P, Ps, Ps.....Py.
2. Conguer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P»,...P; into solution for P.

Merge-Sort
e Using divide-and-conquer, we can obtain a merge-sort algorithm.
— Divide: Divide n elements into two subsequences of n/2 elements each.

— Congquer: Sort the two subsequences recursively.

— Combine: Merge the two sorted subsequences.

e Assume we have procedure Merge(A, p, g,) which merges sorted A[p..q] with sorted A[q+1....

in (r —p) time.

e We can sort Alp...r| as follows (initially p=1 and r=n):

Merge Sort(A,p,r)

If p < r then
q=p+r)/2]
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

Example:

5 2 4 6 1 3 2 6

1 2 2 3 4 5 6 6

T T

2 4 5 6 1 2 3 6

VAN
AACAA

e Induction on n

— Easy assuming Merge() is correct!

1.4 Analysis

e To simplify things, let us assume that n is a power of 2, i.e n = 2¥ for some k.

e Running time of the procedure can be analyzed using a recurrence equation/relation.

T(n) caa+T(n/2)+T(n/2)+ con

<
< 2T(n/2) 4+ c3n

4

T(n) < cinlogyn as we will see later.

e We can also get nlogyn bound by noticing that the recursion tree has depth log, n and that
linear time is spent on each level.

e Note:

— We really have T'(n) = ¢4 if n =1

— If n # 2% things can be complicated (We will often assume n = 2¥ to avoid complicated
cases).
1.5 Log’s

e Base 2 logarithm comes up all the time (from now on we will always mean logyn when we
write logn).

— Number of times we can divide n by 2 to get to 1 or less.

— Number of bits in binary representation of n.

Inverse function of 2" =2-2-2---2 (n times).

— Way of doing multiplication by addition: log(ab) = log(a) + log(b)

e Note:

o _ logyn
log,n = Togs a

—logn << yn<<n
1.6 Algorithms matter!

e Sort 10 million integers on

— 1 GHZ computer (1000 million instructions per second) using 2n? algorithm.

— 100 MHz computer (100 million instructions per second) using 50n log n algorithm.

107\2 s
e Supercomputer : 1 21‘1%2.)per”;s;c.on 5 = 200000 seconds = 55 hours.

50-107-log 107 inst.
108 inst. per second

< 50-107.7-3 _ 5.7.3 =105 seconds.

e Personal computer : 108

2 Asymptotic Growth

e In the insertion-sort example we discussed that when analyzing algorithms we are

— interested in worst-case running time as function of input size n
— not interested in exact constants in bound

— not interested in lower order terms

e A good reason for not caring about constants and lower order terms is that the RAM model
is not completely realistic anyway (not all operations cost the same)

4

e We want to express rate of growth of standard functions:

— the leading term with respect to n

— ignoring constants in front of it

kin+ ko ~n
kinlogn ~ nlogn
kin® + kan + ks ~ n?

e We also want to formalize e.g. that a nlogn algorithms is better than a n? algorithm.

U
e O-notation (Big-O)

— you have probably all seen it intuitively defined but we will now define it more carefully.

2.1 O-notation (Big-0)

O(g(n)) ={f(n): 3 ¢,ng > 0 such that f(n) <cg(n) Vn > ng}
e O(-) is used to asymptotically upper bound a function.

e O(-) is used to bound worst-case running time.

e Examples:
— 1/3n% — 3n € O(n?) because 1/3n? — 3n < cn? if ¢ > 1/3 — 3/n which holds for ¢ = 1/3
and n > 1.

— k1n? 4 kon + k3 € O(n?) because kin? + kan + k3 < (k1 + |kao| + |k3|)n? and for ¢ >
k1 + |ko| + |ks| and n > 1, kyn? + kon + k3 < en?.

— k1n? + kon + k3 € O(n?) as kyn? + kon + k3 < (k1 + k2 + k3)n® (Upper bound!).
e Note:
— When we say “the running time is O(n?)” we mean that the worst-case running time is

O(n?) — best case might be better.

— Use of O-notation often makes it much easier to analyze algorithms; we can easily prove
the O(n?) insertion-sort time bound by saying that both loops run in O(n) time.

— We often abuse the notation a little:

« We often write f(n) = O(g(n)) instead of f(n) € O(g(n)).

* We often use O(n) in equations: e.g. 2n? + 3n + 1 = 2n? + O(n) (meaning that
2n2 +3n + 1 = 2n2 + f(n) where f(n) is some function in O(n)).

*x We use O(1) to denote constant time.

2.2 Q-notation (big-Omega)

Qg(n)) ={f(n) : 3 ¢,np > 0 such that cg(n) < f(n) Yn > no}

e ()(+) is used to asymptotically lower bound a function.

RN (D)
cg(n)

e Examples:
— 1/3n% — 3n = Q(n?) because 1/3n% — 3n > cn? if ¢ < 1/3 — 3/n which is true if ¢ = 1/6
and n > 18.
— kin? + kon + k3 = Q(n?).
— kin® + kan + k3 = Q(n) (lower bound!)

e Note:

— When we say “the running time is ©(n?)”, we mean that the best case running time is
Q(n?) — the worst case might be worse.

e Insertion-sort:

— Best case: Q(n)
— Worst case: O(n?)
— We can also say that the worst case running time is (n?) = worst case running time

is “precisely” n?.

2.3 ©O-notation (Big-Theta)

O(g(n)) ={f(n) : 3 c1,c2,n0 > 0 such that c1g(n) < f(n) < cag(n) ¥n > no}

e O(-) is used to asymptotically tight bound a function.

[#(n) = 6(g(n) if and only if {(n) = O(g(n)) and f(n) = g(n)) |

e Examples:

— kin? + kon + k3 = ©(n?)
— worst case running time of insertion-sort is ©(n?)
— 6nlogn + /nlog?n = O(nlogn):
* We need to find ng, ¢, co such that cinlogn < 6nlogn + \/ﬁlog2 n < conlogn for

n > ng
cinlogn < 6nlogn+nlog?n = ¢; < 64182 Ok if we choose ¢; = 6 and ng = 1.

n
6nlogn + /nlog?n < cynlogn = 6 + l%%l < ¢9. Is it ok to choose cg = 7?7 Yes,
logn < /nifn>2.
x So g =6, co =7 and ng = 2 works.

e Note:

We often think of f(n) = O(g(n)) as corresponding to f(n) < g(n).
Similarly, f(n) = ©(g(n)) corresponds to f(n) = g(n)

— Similarly, f(n) = Q(g(n)) corresponds to f(n) > g(n)

One can also define 0 and w

x f(n) =o0(g(n)) corresponds to f(n) < g(n)
x f(n) =w(g(n)) corresponds to f(n) > g(n)

2.4 Growth rate of standard functions

e Book introduces standard functions in section 2.2 (we will introduce them as we need them):

— Polynomial of degree d: p(n) = Y%, a; - n’ where aj,as,...,ay are constants (and

ag > 0). p(n) = O(n%)
e “Growth order”: loglogn,logn,/n,n,nloglogn,nlogn,nlog?n,n? n3,2"

— Growth rate of polynomials versus exponentials: lim,,_, (’;—Z = 0.

