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1 NP-Completeness

• We have been discussing complexity theory

– classification of problems according to their difficulty

• We introduced the classes P , NP and EXP

EXP = {Decision problems solvable in exponential time}
P = {Decision problems solvable in polynomial time}
NP = {Decision problems where Yes solution can verified in polynomial time}

• A major open question in theoretical computer science is if P = NP or not.

• We also introduced the notion of polynomial time reductions

X ≤P Y :

A problem X is polynomial time reducible to a problem Y (X ≤P Y ) if we can solve X
in a polynomial number of calls to an algorithm for Y (and the instance of problem Y we
solve can be computed in polynomial time from the instance of problem X).

• We then introduced the class of NP -complete problems NPC

A problem Y is in NPC if

a) Y ∈ NP

b) X ≤P Y for all X ∈ NP

and discussed how the problems in NPC are the hardest problems in NP and the key to
resolving the P = NP question.

– If one problem Y ∈ NPC is in P then P = NP .

– If one problem Y ∈ NP is not in P then NPC ∩ P = ∅.
– By now a lot of problems have been proved NP -complete

– We think the world looks like this—but we really do not know:

P NPC

NP=EXP

1



– If someone found a polynomial time solution to a problem in NPC our world would
“collapse” and a lot of smart people have tried really hard to solve NPC problems
efficiently
⇓
We regard Y ∈ NPC a strong evidence for Y being hard!

2 NP -Complete Problems

• The following lemma helps us to prove a problem NP -complete using another NP -complete
problem.

Lemma: If Y ∈ NP and X ≤P Y for some X ∈ NPC then Y ∈ NPC

– To prove Y ∈ NPC we just need to prove Y ∈ NP (often easy) and reduce problem in
NPC to Y (no lower bound proof needed!).

• Finding the first problem in NPC is somewhat difficult and require quite a lot of formalism

– The first problem proven to be in NPC was SAT:
Give a boolean formula, is there an assignment of true and false to the variables that
makes the formula true?

– For example:
Can ((x1 ⇒ x2) ∨ ¬((¬x1 ⇔ x3) ∨ x4)) ∧ ¬x2 be satisfied?

• Last time we discussed what seems to be a easier problem 3Sat: Given a formula in 3-CNF,
is it satisfiable?

– A formula is in 3-CNF (conjunctive normal form) if it consists of an And of ’clauses’
each of which is the Or of 3 ’literals’ (a variable or the negation of a variable)

– Example: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

• We prove that 3SAT is in NPC, that is, that it is as hard as general SAT.

– 3SAT ∈ NP

– SAT ≤P 3SAT

(we showed how to transform general formula into 3-CNF in polynomial time.)

3 Clique

• NP-complete problems arise in many domains

– Many important graph problems are in NPC.

• Clique: Given a graph G = (V,E) decide if there is a subset V ′ ⊂ V of size k such that
there is an edge between every pair of vertices in V ′

– Decision version of problem of finding maximal clique.
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Example (clique of size 4):

• We could of course solve Clique by testing each of the (
(|V |

k

)
) ways of choosing subset of size

k.

– but would take exponential time for k = Θ(|V |)
• Clique is indeed hard:

Theorem: Clique ∈ NPC

Proof:

– Clique ∈ NP : Given a subset V ′ we can easily check in polynomial time that |V ′| = k
and that V ′ is a clique.

– 3SAT ≤P Clique (somewhat surprising since formulas seem to have little to do with
graphs):

∗ We construct a graph G = (V,E) from a k clause formula φ = C1 ∧C2 ∧C3 · · · ∧Ck

in 3-CNF:
For each clause Cr = (lr1 ∨ lr2 ∨ lr3) we place triple of vertices vr

1, v
r
2, v

r
3 in V .

Vertices vr
i and vs

j are connected if
a) r 6= s

b) lri and lsj are consistent (not negations of each other)

Example: φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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∗ Graph can be constructed in polynomial time.

3



∗ We have φ satisfiable ⇔ G has clique of size k:

(Example: φ satisfiable by x1 = 0, x2 = 0, x3 = 1 and set of white vertices is a clique
of size 3.)

⇒:
· Each clause Cr contains at least one literal lri assigned 1
· Each such literal corresponds to vertex vr

i ; pick such a vertex in each clause ⇒ k
vertices V ′

· For any two vertices vr
i , v

s
j ∈ V ′ (r 6= s) both corresponding literals lri and lsi are

mapped to 1
⇒ they are not complements
⇒ edge in G between vr

i and vs
j

⇒ V ′ clique.
⇐:
· Let V ′ be clique of size k ⇒ V ′ contains exactly one vertex for each triple (no

edges between vertices in triple)
· We can assign 1 to each literal lri corresponding to vr

i ∈ V since G contains no
edges between inconsistent literals

· Each clause is satisfiable ⇒ φ satisfiable.

4 Examples of other problems in NPC

• As mentioned a lot of problems have been proved to be in NPC (and thus we believe them
to be hard)

• One example is Vertex-cover: Given a graph G = (V,E) decide if there is a set V ′ ⊂ V of
size k, such that for each edge e = (u, v) ∈ E, u ∈ V ′ or v ∈ V ′ (or both).

– Decision version of finding minimal vertex cover.

• We can prove Vertex-cover ∈ NP and Clique ≤P Vertex-cover which means that
Vertex-cover ∈ NPC.

• We can also prove that Vertex-cover≤P HAM-Cycle and we have already discussed that
HAM-Cycle≤P TSP, which means that both HAM-Cycle and TSP are NP -complete.

• We can illustrate our NPC proofs using the following “reduction-graph”:

SAT

3SAT

Clique

Vertex−cover

HAM−Cycle

TSP

– As mentioned many more problems have been shown NP -complete.
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• Even though many important problems are NP -complete, it doesn’t mean that we have given
up on solving them. Often we are able to solve interesting instances because e.g.

– they are small (exponential time algorithms work)

– they are special (solvable in polynomial time)

– we can find near optimal solutions (many so-called approximation algorithms have been
developed for NPC problems in recent years. For example, its very easy to design
algorithm that computes a vertex cover for a graph of size at most twice the minimal
cover).
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