Lecture 19: Basic Graph Algorithms
(CLRS B.4-B.5, 22.1-22.4)

June 17th, 2002

1 Graph Problems

e You should already know about graphs

— Today we will quickly review basic definitions and a few fundamental graph algorithms.

1.1 Definitions

e A graph G = (V, E) consists of a finite set of vertices V' and a finite set of edges E.

— Directed graphs: E is a set of ordered pairs of vertices (u,v) where u,v € V
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— Undirected graph: E is a set of unordered pairs of vertices {u,v} where u,v € V
V={122345,6}
E={{12}, {15}, {25}, {36}}
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Edge (u,v) is incident to u and v

Degree of vertex in undirected graph is the number of edges incident to it.

In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.

A path from w7 to us is a sequence of vertices < wuj=wgy,v1,vs9, - -,V=us > such that
(vi,vi41) € E (or {v;,vig1} € E)

— We say that us is reachable from u;
— The length of the path is k

— It is a cycle if vg = vg



An undirected graph is connected if every pair of vertices are connected by a path

— The connected components are the equivalence classes of the vertices under the “reach-
ability” relation. (All connected pair of vertices are in the same connected component).

A directed graph is strongly connected if every pair of vertices are reachable from each other

— The strongly connected components are the equivalence classes of the vertices under the
“mutual reachability” relation.

Graphs appear all over the place in all kinds of applications, e.g:

— Trees (|[E| =|V]—1)
— Connectivity /dependencies (house building plans, WWW-page connections, ...)

Often the edges (u,v) in a graph have weights w(u,v), e.g.

— Road networks (distances)

— Cable networks (capacity)

1.2 Representation

e Adjacency-list representation:

— Array of |V] list of edges incident to each vertex.
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— Note: For undirected graphs, every edge is stored twice.

— If graph is weighted, a weight is stored with each edge.



e Adjacency-matriz representation:

— |V| x |V| matrix A where
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— Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal
(AT = A).

— If graph is weighted, weights are stored instead of one’s.

e Comparison of matrix and list representation:

Adjacency list ‘ Adjacency matrix

O(|V| + |E|) space O(|V|?) space

Good if graph sparse (|E| << |V|?) | Good if graph dense (|E| ~ |V|?)
No quick access to (u,v) O(1) access to (u,v)

e We will use adjacency list representation unless stated otherwise (O(|V| + |E|) space).

2 Graph traversal

e There are two standard (and simple) ways of traversing all vertices/edges in a graph in a
systematic way

— Breadth-first
— Depth-first

e We can use them in many fundamental algorithms, e.g finding cycles, connected components,



2.1 Breadth-first search (BFS)

e Main idea:

— Start at some source vertex s and visit,

All vertices at distance 1,

Followed by all vertices at distance 2,

— Followed by all vertices at distance 3,

BFS corresponds to computing shortest path distance (number of edges) from s to all other
vertices.

To control progress of our BFS algorithm, we think about coloring each vertex

— White before we start,
— Gray after we visit the vertex but before we have visited all its adjacent vertices,
— Black after we have visited the vertex and all its adjacent vertices (all adjacent vertices

are gray).

e We use a queue @ to hold all gray vertices—vertices we have seen but are still not done with.

We remember from which vertex a given vertex v is colored gray (visit[v]).

Algorithm:

BFS(s)
color[s] = gray
d[s] =0
ENQUEUE(Q, 5)
WHILE @ not empty DO
DEQUEUE(Q, u)
FOR (u,v) € E DO
IF color[v] = white THEN
color[v] = gray
d[v] = d[u] + 1
visit[v] = u
ENQUEUE(Q, v)
FI

color[u] = black
OD

e Algorithm runs in O(|V| + |E|) time



e Example (for directed graph):

e Note:

— visit[v] forms a tree; BFS-tree.
— d[v] contains length of shortest path from s to v.

— We can use visit[v] to find the shortest path from s to a given vertex.

e If graph is not connected we have to try to start the traversal at all nodes.

FOR each vertex u € V DO
IF color[u] = white THEN BFS(u)

OD

— Note: We can use algorithm to compute connected components in O(|V] + |E|) time.



2.2 Depth-first search (DFS)

o If we use stack instead of queue ) we get another traversal order; depth-first

— We go “as deep as possible”,
— Go back until we find unexplored adjacent vertex,

— Go as deep as possible,

Often we are interested in “start time” and “finish time” of vertex u

— Start time (d]u]): indicates at what “time” vertex is first visited.

— Finish time (f[u]): indicates at what “time” all adjacent vertices have been visited.

Instead of using a stack in a DFS algorithms, we can write a recursive procedure

— We will color a vertex gray when we first meet it and black when we finish processing
all adjacent vertices.

Algorithm:

DFS(u)
color[u] = gray
d[u] = time
time = time + 1
FOR (u,v) € E DO
IF color[v] = white THEN
visit[v] = u
DFS(v)
FI
OD
color[u] = black
flu] = time

time = time + 1

e Algorithm runs in O(|V| + |E|) time

— As before we can extend algorithm to unconnected graphs and we can use it to detect
cycles in O(|V| + |E|) time.
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e As previously visit[v] forms a tree; DFS-tree

— Note: If u is descendent of v in DFS-tree then d[v] < d[u] < flu] < f[v]

3 Topological sorting

e Definition: Topological sorting of directed acyclic graph G = (V, E) is a linear ordering of
vertices V' such that (u,v) € E = u appear before v in ordering.

e Topological ordering can be used in scheduling;:

— Example: Dressing (arrow implies “must come before”)

Socks

Underwear

We want to compute order in which to get dressed. One possibility:

{Socks} {U nderwear

Shoes | Watch| [Shirt% Jacket)

The given order is one possible topological order.

e Algorithm: Topological order just reverse DFS finish time (= O(|V| + |E|) running time).



e Correctness: (u,v) € E & f(v) < f(u)

— Proof: When (u,v) is explored by DFS algorithm, v must be white or black (gray =
cycle).
* v white: v visited and finished before w is finished = f(v) < f(u)
« v black: v already finished = f(v) < f(u)

e Alternative algorithm: Count in-degree of each vertex and repeatedly number and remove
in-degree 0 vertex and its outgoing edges:

FOR all vertices v DO
degree[v] = 0

OD
FOR all edges (u,v) € E DO

degree[v] = degreef[v] + 1
IF degree[v] = 0 THEN ENQUEUE(Q, v)

OD
i=0
WHILE Q # 0 DO
DEQUEUE(Q, u)
Topsort(u) =14
1=1+1
FOR all edges (u,v) € E DO
degree[v] =degree[v] — 1
IF degree[v] = 0 THEN ENQUEUE(Q, v)
OD

OD




