
CPS 130 Homework 9 - Solutions

1. (CLRS 6.1-1) What are the minimum and maximum number of elements in a heap of
height h?

Solution: The minimum number of elements is 2h and the maximum number of elements
is 2h+1 − 1.

2. (CLRS 6.1-4) Where in a max-heap might the smallest element reside, assuming that all
elements are distinct?

Solution: Since the parent is greater or equal to its children, the smallest element must
be a leaf node.

3. (CLRS 6.2-4) What is the effect of calling MAX-HEAPIFY(A, i) for i > size[A]/2?

Solution: Nothing, the elements are all leaves.

4. (CLRS 6.5-3) Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-
MIN, HEAP-DECREASE-KEY and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.

Solution:

HEAP-MINIMUM(A)

return A[1]

HEAP-EXTRACT-MIN(A)

if heap-size[A] < 1

then error ‘‘heap underflow’’

min <- A[1]

A[1] <- A[heap-size[A]]

heap-size[A] <- heap-size[A] - 1

MIN-HEAPIFY(A,1)

return min

HEAP-DECREASE-KEY(A,i,key)

if key > A[i]

then error ‘‘new key is larger than current key’’

A[i] <- key

while i > 1 and A[parent(i)] > A[i]

do exchange A[i] <-> A[parent(i)]

i <- parent(i)

MIN-HEAP-INSERT(A,key)

heap-size[A] <- heap-size[A] + 1

A[heap-size[A]] <- +inf

HEAP-DECREASE-KEY(A,heap-size[A],key)



5. (CLRS 6-2) Analysis of d-ary heaps
A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

a. How would you represent a d-ary heap in a array?

b. What is the height of a d-ary heap of n elements in terms of n and d?

c. Give an efficient implementation of Extract-Max. Analyze its running time in
terms of d and n.

d. Give an efficient implementation of Insert. Analyze its running time in terms of d
and n.

e. Give an efficient implementation of Heap-Increase-Key(A, i, k), which sets A[i]←
max(A[i], k) and updates the heap structure appropriately. Analyze its running time
in terms of d and n.

Solution:

a. Similarly with the binary heap, a d-ary heap can be represented as an array A[1..n].
The children of A[1] are A[2], A[3], ..., A[d+1], the children of A[2] are A[d+2], A[d+
3], ..., A[2d + 1] and so on. The general rule is:

Children(i) = {di− d + 2, di− d + 3, ..., di, di + 1}.

The parent of A[1] is A[1]. The parent of A[i] for 2 ≤ i ≤ d + 1 is A[1]. The parent
of A[i] for d + 2 ≤ i ≤ 2d + 1 is A[2]. The general rule is:

Parent(i) =
⌈
i− 1

d

⌉
.

You can check for instance using the rule above that Parent(di − d + 2) is i and
Parent(di− d + 1) is i− 1.

b. The number of nodes at level h is at most dh. The total number of nodes in a tree
of height h is at most 1 + d + . . . + dh = Θ(dh). Setting dh = n implies the height is
Θ(logd n).

c. Extract Max is the same as for binary heaps. Its running time is given by the
running time of Heapify. The Heapify operat ion on d-ary heaps works very
similarly to the one on binary heaps:

Heapify d(A, i)

i. find largest element l = max{A[i],Children(A[i])}
ii. if l 6= i then exchange A[i]↔ A[l] and Heapify d(A, i)

The running time of Heapify d is Θ(d · logd n). The d term is because at each
iteration a node compares its value and the values of its d children to find the
maximum, which takes O(d) time.

d. Insert is the same as for binary heaps. The running time is Θ(height) = Θ(logd n).

e. The running time is O(logd n) if A[i] < k.

2



Heap Increase Key d(A, i, k)

i. if A[i] < k then

A[i] = k

while i > 1 and A[Parent(i)] < A[i] do

exchange A[i]↔ A[Parent(i)]

i = Parent(i)

3


