CPS 130 Homework 9 - Solutions

1. (CLRS 6.1-1) What are the minimum and maximum number of elements in a heap of
height h?

Solution: The minimum number of elements is 2" and the maximum number of elements
is 2h+1 1,

2. (CLRS 6.1-4) Where in a max-heap might the smallest element reside, assuming that all
elements are distinct?

Solution: Since the parent is greater or equal to its children, the smallest element must
be a leaf node.

3. (CLRS 6.2-4) What is the effect of calling MAX-HEAPIFY (A, i) for i > size[A]/27

Solution: Nothing, the elements are all leaves.

4. (CLRS 6.5-3) Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-
MIN, HEAP-DECREASE-KEY and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.

Solution:

HEAP-MINIMUM(A)
return A[1]

HEAP-EXTRACT-MIN (A)

if heap-size[A] < 1
then error ‘‘heap underflow’’

min <- A[1]
A[1] <- Al[heap-size[A]]
heap-size[A] <- heap-size[A] - 1
MIN-HEAPIFY(A,1)
return min

HEAP-DECREASE-KEY(A,1i,key)
if key > A[i]
then error ‘‘new key is larger than current key’’
A[i] <- key
while 1 > 1 and A[parent(i)] > A[il
do exchange A[i] <-> A[parent(i)]
i <- parent(i)

MIN-HEAP-INSERT (A, key)
heap-size[A] <- heap-size[A] + 1
Alheap-size[A]] <- +inf
HEAP-DECREASE-KEY (A, heap-size[A] ,key)

5. (CLRS 6-2) Analysis of d-ary heaps
A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

a.
b.

C.

How would you represent a d-ary heap in a array?
What is the height of a d-ary heap of n elements in terms of n and d?

Give an efficient implementation of EXTRACT-MAX. Analyze its running time in
terms of d and n.

Give an efficient implementation of INSERT. Analyze its running time in terms of d
and n.

Give an efficient implementation of HEAP-INCREASE-KEY (A4, i, k), which sets Afi] «
max(A[i], k) and updates the heap structure appropriately. Analyze its running time
in terms of d and n.

Solution:

a.

Similarly with the binary heap, a d-ary heap can be represented as an array A[l..n].
The children of A[1] are A[2], A[3], ..., A[d+1], the children of A[2] are A[d+ 2], Ald+
3], ..., A[2d 4+ 1] and so on. The general rule is:

CHILDREN(i) = {di —d + 2,di — d + 3, ...,di,di + 1}.

The parent of A[1] is A[l]. The parent of A[i| for 2 <i < d+ 1 is A[l]. The parent
of Afi] for d+2 <i <2d+11is A[2]. The general rule is:

— 1
PARENT(i) = F w :
d
You can check for instance using the rule above that PARENT(di — d + 2) is ¢ and
PARENT(di —d+ 1) is i — 1.

The number of nodes at level h is at most d*. The total number of nodes in a tree
of height h is at most 1 +d + ...+ d" = ©(d"). Setting d" = n implies the height is
O(log,n).

. EXTRACT_MAX is the same as for binary heaps. Its running time is given by the

running time of HEAPIFY. The HEAPIFY operat ion on d-ary heaps works very
similarly to the one on binary heaps:

HEAPIFY_D(A, 1)

i. find largest element | = max{A[i], CHILDREN(A[:])}

ii. if [# i then exchange A[i] < A[l] and HEAPIFY_D(A,)

The running time of HEAPIFY_D is ©(d - log;n). The d term is because at each
iteration a node compares its value and the values of its d children to find the
maximum, which takes O(d) time.

INSERT is the same as for binary heaps. The running time is O (height) = O(log,n).

. The running time is O(log,n) if Afi] < k.

HEAP_INCREASE_KEY_D(A, 1, k)
i. if A[i] < k then
Ali] =k
while 7 > 1 and A[PARENT(7)] < A[i] do

exchange A[i] <> A[PARENT(7)]
i = PARENT(7)

