
CPS 130 Homework 20 - Solutions

1. [CLRS 23.2-4] Suppose that all edge weights in a graph are integers in the range 1 to jV j.
How fast can you make Kruskal's algorithm run? What if the edge weights are integers
in the range from 1 to W for some constant W ?

Solution: Kruskal's algorithm sorts edges in nondecreasing order by weight. If the edge
weights are integers in the range 1 to jV j, we can use Counting-Sort to sort the edges
in �(V +E) time (recall Counting-Sort correctly sorts n integers in the range 0 to k in
�(n+k) time). Then Kruskal's algorithm will run in O(V +E+V logV) = O(E+V logV)
time.

If the edge weights are integers in the range from 1 to W for some constant W , we can
use Counting-Sort to sort the edges in �(W + E) time and Kruskal's algorithm will
run in O(W + E + V logV) time.

2. [CLRS 23-4]

Solution:

(a) Maybe-MST-A removes edges in non-increasing order as long as the graph remains
connected, and the resulting T is a minimum spanning tree. To show correctness, let
S be a MST of G. Each time we remove an edge e, either e 2 S or e =2 S. If e =2 S,
then we can just remove it. If e 2 S, removing e disconnects S (but not the graph)
into two trees. There cannot be another edge connecting these trees with smaller
weight than e, because by assumption S is a MST, and if a larger edge existed that
connected the trees the algorithm would have removed it before removing e. We
know a path exists since the graph is still connected, so it must be there is another
edge with equal weight that hasn't been discovered yet, so we can remove e.

Implementation: Use an adjacency list representation for T . We can sort the edges
in O(E logE) usingMerge-Sort. BFS or DFS can be used in O(V +E) to check if
T �feg is a connected graph. The edges are sorted once and BFS/DFS is performed
E times, once for each edge. The total running time is O(E logE + E(V + E)) =
O(E2).

(b) Maybe-MST-B will not give a minimum spanning tree. We prove this by counter-
example. Consider the following graph G:

1 2

3
u v

w

The MST of G would have edges (w; u) and (v; w) with weight 3. Since Maybe-
MST-B takes edges in arbitrary order, it could add edges (u; v) and (v; w) to T ,
then try to add (w; u) which forms a cycle, then return T (weight 5).

1

This implementation is similar to Kruskal's algorithm. Use a Union-Find data
structure to maintain T . For each vertex v we need to Make-Set(v). For each
edge e = (u; v), if Find-Set(u) 6= Find-Set(v) then there is no cycle in T [feg,
and we Union-Set(u,v).

In total there are V Make-Set operations, 2E Find-Set operations, and V � 1
Union-Set operations. Using an improved Union-Find data structure we can
perform Find-Set in O(1) and Union-Set in O(logV) time amortized to give a
running time of O(V) +O(E) +O(V logV) = O(V logV + E).

(c) Maybe-MST-C gives a minimum spanning tree. Maybe-MST-C adds edges in
arbitrary order to T and if a cycle c is detected removes the maximum-weight edge
on c. Each time we add an edge e, either we form a cycle c or we do not. Suppose e
is added to some tree T 0 in T and a cycle is c formed. Then we remove a maximum-
weight edge e0 from c and T 0 � e0 + e is of less or equal weight than T 0 (because e0

is of greater or equal weight than e). If a cycle is not formed we either just add e
to some tree in T or e connects two trees in T . In the second case if e is not the
smallest weight edge that connects the trees then we haven't discovered it yet, and
when we eventually form a cycle we have already shown Maybe-MST-C performs
correctly.

Implementation: Use an adjacency list representation for T . For each edge, we add
it to T and then check T [feg for cycles. There can be at most one cycle, so we can
use DFS to detect the cycle and output it. If there are no cycles, then we are done
with this edge. Otherwise, we need to output the cycle, �nd the maximum-weight
edge, and delete it from T .

Adding an edge takes O(1). DFS takes O(V + E) = O(V) in this case (as soon as
T has a cycle we break it, so the number of edges in T at any point is no greater
than V). Finding the maximum-weight edge on the cycle takes O(V) and deleting
an edge is O(V). For each edge we add it to T , perform DFS, and possibly �nd a
cycle, so the total running time is O(EV).

2

