
CPS 130 Homework 19 - Solutions

1. [CLRS 22.1-1]

Solution: Given an adjacency-list representation Adj of a directed graph, the out-degree
of a vertex u is equal to the length of Adj[u], and the sum of the lengths of all the
adjacency lists in Adj is jEj. Thus the time to compute the out-degree of every vertex is
�(V +E). The in-degree of a vertex u is equal to the number of times it appears in all the
lists in Adj. If we search all the lists for each vertex, the time to compute the in-degree of
every vertex is �(V E). Alternatively, we can allocate an array T of size jV j and initialize
its entries to zero. Then we only need to scan the lists in Adj once, incrementing T [u]
when we see u in the lists. The values in T will be the in-degrees of every vertex. This
can be done in �(V + E) time with �(V ) additional storage.

The adjacency-matrix A of any graph has �(V 2) entries, regardless of the number of
edges in the graph. For a directed graph, computing the out-degree of a vertex u is
equivalent to scanning the row corresponding to u in A and summing the ones, so that
computing the out-degree of every vertex is equivalent to scanning all entries of A. Thus
the time required is �(V 2). Similarly, computing the in-degree of a vertex u is equivalent
to scanning the column corresponding to u in A and summing the ones, thus the time
required is also �(V 2).

2. [CLRS 22.1-5]

Solution: To compute G2 from the adjacency-list representation Adj of G, we perform
the following for each Adj[u]:

for each vertex v in Adj[u]
for each vertex w in Adj[v]

edge(u; w) 2 E2

insert w in Adj2(u)

where Adj2 is the adjacency-list representation of G2. After we have computed Adj2, we
have to remove any duplicate edges from the lists (there may be more than one two-edge
path in G between any two vertices). For every edge in Adj we scan at most jV j vertices,
we compute Adj2 in time O(V E). Removing duplicate edges is done in O(V + E) as
shown in [CLRS 22.1-4]. Thus the total running time is O(V E)+O(V + E)= O(V E).

Let A denote the adjacency-matrix representation of G. The adjacency-matrix represen-
tation of G2 is the square of A. Computing A2 can be done in time O(V 3) (and even
faster, theoretically; Strassen's algorithm for example will compute A2 in O(V lg 7)).

3. [CLRS 22.2-3]

Solution: If the input graph for BFS is represented by an adjacency-matrix A and the
BFS algorithm is modi�ed to handle this form of input, the the running time will be the
size of A, which is �(V 2). This is because we have to modify BFS to look at every entry
in A in the for loop of the algorithm, which may or may not be an edge.

1



4. [CLRS 22.3-7]

Solution: Consider the following directed graph G:

w

u v

There is a path from u to v in G. Suppose a DFS search discovers vertices in the order
w; u; v. Then the depth-�rst tree will have root w and u, v are children of w. However, v
is not a descendant of u.

This is just one possible counterexample.

5. [CLRS 22.4-5]

Solution: We can perform topological sorting on a directed acyclic graph G using the
following idea: repeatedly �nd a vertex of in-degree 0, output it, and remove it and all
of its outgoing edges from the graph. To implement this idea, we �rst create an array
T of size jV j and initialize its entries to zero, and create an initially empty stack S. Let
Adj denote the adjacency-list representation of G. We scan through all the edges in Adj,
incrementing T [u] each time we see a vertex u. In a directed acyclic graph there must be
at least one vertex of in-degree 0, so we know that there is at least one entry of T that
is zero. We scan through T a second time and for every vertex u such that T [u] = 0, we
push u on S. Pop S and output u. When we output a vertex we do as follows: for each
vertex v in Adj[u] we decrement T [v] by one. If any of these T [v] = 0, then push v on S.

To show our algorithm is correct: At each step there must be at least one vertex with
in-degree 0, so the stack is never empty, and every vertex will be pushed and popped from
the stack once, so we will output all the vertices. For a vertex v with in-degree k � 1,
there are k vertices u1; u2; : : : uk which will appear before v in the linear ordering of G.
Then T [v] = k, since v 2 Adj[ui] for i = 1; : : : ; k vertices of G, and v will only be pushed
on the stack after all ui have already been popped (each pop decrements T [v] by one).

The running time is �(V ) to initialize T , O(1) to initialize S, and �(E) to scan the edges
of E and count in-degrees. The second scan of T is �(V ). Every vertex will be pushed
and popped from the stack exactly once. The jEj edges are removed from the graph once
(which corresponds to decrementing entries of T �(E) times). This gives a total running
time of �(V )+O(1)+�(E)+�(V )+�(E) = �(V + E).

If the graph has cycles, then at some point there will be no zero entries in T , the stack
will be empty, and our algorithm cannot complete the sort.

Note: The algorithm to solve this problem is also given in Lecture 19, but you still need
to analyze the running time and prove it works.

2


