
CPS 130 Homework 18 - Solutions

Problem 1:

(a) Is it true that in the worst case, a red-black tree insertion requires O(1) rotations?

Solution: True, at most two rotations are performed.

(b) Is it true that in the worst case a red-black tree deletion requires O(1) node recolorings?

Solution: False, the number of recolorings can be at most �(logn).

(c) Is it true that walking a red-black tree with n nodes in pre-order takes �(n logn) time?

Solution: False, a pre-order tree walk takes �(n) time.

(d) Draw a left rotation and a right rotation.

Solution:
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(e) What type of tree-walk on a red-black tree outputs the elements in sorted order?

Solution: In-order traversal.

(f) Given a red-black tree with n elements, how fast can you sort them using the tree?

Solution: �(n) using an in-order traversal.

(g) How fast can we build a red-black tree with n elements?

Solution: Each insertion into a red-black tree takes O(logn) time and we insert n elements,
so we can build the tree in time O(n logn).

(h) If a data structure supports an operation foo such that a sequence of n foo's takes
O(n logn) time in the worst case, then the amortized time of a foo operation is �( )
while the actual time of a single foo operation could be as low as �( ) and as high
as �( ).

Solution: The amortized time of a foo operation is �(logn) while the actual time of a
single foo operation could be as low as �(1) and as high as �(n logn).

(i) In order for dynamic programming to be applicable to optimization problems the structure
of the optimal solution must satisfy a certain condition. What is this condition and what
does it mean?

Solution: A problem exhibits optimal substructure if an optimal solution to the problem
contains within it optimal solutions to subproblems.
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Problem 2:

In this problem we consider a data structure D for maintaining a set of integers under the normal
Init, Insert, Delete, and Find operations, as well as a Count operation, de�ned as follows:

� Init(D): Create an empty structure D.

� Insert(D,x): Insert x in D.

� Delete(D,x): Delete x from D.

� Find(D,x): Return pointer to x in D.

� Count(D,x): Return number of elements larger than x in D.

Describe how to modify a standard red-black tree in order to implement D such that Init is
supported in O(1) time and Insert, Delete, Find, and Count are supported in O(logn)
time.

Solution: We can implement D using a red-black tree with an additional �eld size stored at
each node. The size �eld maintains the size of the subtree rooted at x. If we set the size of leaf
(nil) nodes to zero then we may de�ne size for any node x by

size(x) = size(right(x)) + size(left(x)) + 1;

and we can maintain size in O(1) time per node.

By Theorem 14.4 in CLRS, if we augment a red-black tree of n nodes with a �eld f at each node
x such that f can be computed using only the information stored in x, left(x), and right(x),
then we can maintain f at all nodes during insertion and deletion in O(logn) time. In particular,
we can maintain size so that Insert(D,x) and Delete(D,x) are supported in O(logn) time.
Init(D) requires creating a nil node (null pointer) with size zero, which is done in O(1) time.
Find(D,x) is supported in O(logn) time, as we know a tree search requires time proportional
to the height of the tree, which for a red-black tree is O(logn), and that size is not a�ected at
any node during the search. An implementation for Count(D,x) could be:

Count[D,x]

if x = nil return

c = 0

r = root(D)

while r != nil

if key(x) < key(r) then

c = c + size(right(r)) + 1

r = left(r)

else if key(x) > key(r)

r = right(r)

else if key(x) = key(r)

return c + size(right(r))

end if

end while

return c
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The value c returned by Count will be the number of elements larger than x in D. This
implementation of Count correctly handles the case when x is not in D. It suÆces to explain in
words without pseudocode the main idea of the Count implementation. We maintain a count
variable c which is initially zero and start at the root of the tree. At any node r, if the key of x
is less than the key of r, we add to c the size of r's right subtree plus one (to count r) and move
left. If they key of x is greater than the key of r, then we move right. If the keys are equal we
return c plus the size of r's right subtree. If x is not in the tree, then we will travel to a leaf, r
will be nil, and we return c. We now have to show that Count is supported in O(logn) time.
Starting at the root, we compare the key of x with the key of r. The procedure terminates if the
keys are equal or we encounter a nil node. Else it travels to one of the children of r. At each
node O(1) work is performed. The nodes encountered form a path downward from the root and
thus the running time of Count is proportional to the height of the tree, which is O(logn).

Problem 3:

A pharmacist has W pills and n empty bottles. Let fp1; p2; :::; png denote the number of pills
that each bottle can hold.

(a) Describe a greedy algorithm, which, given W and fp1; p2; :::; png, determines the fewest
number of bottles needed to store the pills. Prove that your algorithm is correct (that is,
prove that the �rst bottle chosen by your algorithm will be in some optimal solution).

Solution: Sort the n bottles in non-increasing order of capacity. Pick the �rst bottle,
which has largest capacity, and �ll it with pills. If there are still pills left, �ll the next bottle
with pills. Continue �lling bottles until there are no more pills. We can sort the bottles in
O(n logn) and it takes time O(n) to �ll the bottles, so our greedy algorithm has running
time O(n logn).

To show correctness, we want to show there is an optimal solution that includes the �rst
greedy choice made by our algorithm. Let k be the fewest number of bottles needed to
store the pills and let S be some optimal solution. Denote the �rst bottle chosen by our
algorithm by p0. If S contains p0, then we have shown our bottle is in some optimal solution.
Otherwise, suppose p0 is not contained in S. All bottles in S are smaller in capacity than
p0 (since p0 is the largest bottle) and we can remove any of the bottles in S and empty its
pills into p0, creating a new set of bottles S 0 = S � fpg [ fp0g that also contains k bottles
{ the same number of bottles as in S 0. Thus S 0 is an optimal solution that includes p0 and
we have shown there is always an optimal solution that includes the �rst greedy choice.

Because we have shown there always exists an optimal solution that contains p0, the problem
is reduced to �nding an optimal solution to the subproblem of �nding k � 1 bottles in
fp1; p2; :::; png � fp0g to hold W � p0 pills. The subproblem is of the same form as the
original problem, so that by induction on k we can show that making the greedy choice at
every step produces an optimal solution.

(b) How would you modify your algorithm if each bottle also has an associated cost ci, and you
want to minimize the total cost of the bottles used to store all the pills? Give a recursive
formulation of this problem (formula is enough). You do not need to prove correctness.

Hint: Let MinPill[i; j] be the minimum cost obtainable when storing j pills using bottles

among 1 through i. Thinking of the 0-1 knapsack problem formulation may help.

Solution: We want to �nd the minimum cost obtainable when storing j pills using bottles
chosen from the set bottle 1 through bottle i. This occurs either with or without bottle i.
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The �rst case is given by the cost ci of storing pi pills in bottle i plus the minimum cost to
store j� pi pills among some subset of bottles 1 through i� 1. The second case is given by
the minimum cost obtainable when storing j pills among some subset of bottles 1 through
i� 1. The minimum of the �rst and second cases is the optimal solution at the ith bottle.

MinPill[i; j] =

(
minfci;MinP ill[i � 1; j]g pj > j;
minfci +MinPill[i � 1; j � pi];MinP ill[i � 1; j]g otherwise:

MinP ill[n;W ] solves our problem.

An implementation for MinPill[i; j] could be as follows:

MinPill[i,j]

if p_i <= j then

with = c_i + MinPill[i-1, j-p_i]

else

with = c_i

end if

without = MinPill[i-1,j]

return min{with, without}

(c) Describe brie
y how you would design an algorithm for it using dynamic programming and
analyze its running time.

Solution: We want to design a dynamic programming algorithm to compute
MinPill[n;W ]. The idea is to avoid repeated calculations of subproblems by solving every
subproblemMinPill[i; j] just once and saving its solution in a table. We create such a table
of size n �W and initialize its entries to null. We modify the function MinPill[n;W ] to
check the table before making a recursive call to see if the value has been computed already.
If so, we return the value. Else we have to make the recursive call and store the result in the
table. From the recursive formulation given in (b) we see the cost to compute MinPill[i; j]
is O(1) (we are �nding the minimum of two values) not counting recursive calls and we
�ll each entry in the table at most once. The running time of the dynamic programming
algorithm is then O(nW ) to create the table added to the O(1) work to compute each of
the nW entries, for a total running time of O(nW ).

An implementation could be as follows:

MinPill[i,j]

if table(i,j) != null then

return table(i,j)

end if

if p_i <= j then

with = c_i + MinPill[i-1, j-p_i]

else

with = c_i

end if

without = MinPill[i-1,j]

table(i,j) = min{with,without}

return table(i,j)
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Problem 4:

In this problem we look at the amortized cost of insertion in a dynamic table. Initially the size
of the table is 1. The cost of insertion is 1 if the table is not full. When an item is inserted into
a full table, it �rst expands the table and then inserts the item in the new table. The expansion
is done by allocating a table of size 3 times larger than the old one and copying all the elements
of the old table into the new table.

(a) What is the cost of the ith insertion?

Solution: We are given that the cost of an insertion is 1 if the table is not full. If the
table is full then we have to copy the elements in the (old) table into the new one and
insert the ith element into the new table, so the cost of the (expensive) ith insertion is i.
More precisely, we know that the size of a new table is three times that of the old table and
initially the table is of size 1, so after k expansions the table is of size 3k, k = 0; 1; 2; : : : and
the actual cost is i = 3k + 1.

cost of insertion i =

(
i if i = 3k + 1; k = 0; 1; 2; : : :
1 otherwise

(b) Using the accounting method, prove that the amortized cost of an insert in a sequence of n
inserts starting with an empty table is O(1).

Solution: In the accounting method we assign di�ering charges to the various operations
performed. The amount we charge an operation is its amortized cost. If the amortized cost
of an operation is higher than its actual cost, then the di�erence is referred to as credit that
is distributed among elements in the system to pay for future operations.

In this problem the only operation is insertion. To calculate the amortized cost for insertion,
we assume that after an expensive operation is performed { expanding the table { all the
credit is used up and we need to accumulate enough credit from the insertions between
table expansions to pay for next expansion. Expanding a table of size 3k gives a new table
of size 3 �3k = 3k+1. Following this expansion, the 3k elements we just copied have no credit
to pay for future operations. There will 2 � 3k inserts into the table before it becomes full
again and the cost of inserting element 2 � 3k + 1 is 3k+1 + 1.

Thus, to pay for the expensive insert the minimum credit c needed per each of the 2 � 3k

inexpensive insertions is the solution to the equation

c
�
2 � 3k

�
+ 1 = 3k+1 + 1;

which is c = 3=2. This is the smallest c for which the total credit in the system at any time
is non-negative. The actual cost of an insertion when the table is not full is 1, so we can
assign an insertion operation an amortized cost of 5=2.

(c) Prove the same amortized cost by de�ning an appropriate potential function. You can use
the standard notation num(T ) for the number of elements in the table T and size(T ) for
the total number of slots (maximum size) of the table.

Solution: We assume that the credit in the system (`potential') is 0 after performing an
expensive operation and increases with each subsequent inexpensive operation to the actual
cost of the next expensive operation.
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For i = 1::n, let ci be the actual cost of operation i and let Di represent the system (or data
structure) that results after the ith operation is performed on Di�1. The amortized cost ai
of the ith operation with respect to � is

ai = ci + �(Di)� �(Di�1);

where �(Di) represents the potential in the system after operation i.

We know from (a) and (b) that if all elements inserted between table expansions have 3=2
credits then we can pay for an expensive insertion into a full table (the table is full when
num(T ) = size(T )). The table is 1=3 full after expansion, that is, num(T ) = size(T )=3,
and the potential in the system is 0 (the potential contributed by the size(T )=3 elements
in the table is already used). In general, when we have num(T ) elements in the table,
num(T ) � size(T )=3 insertions have each contributed 3=2 to the potential in the system.
Thus we can de�ne our potential function as

�(Di) =
3

2

 
num(T )�

size(T )

3

!
:

When num(T ) = size(T )=3, �(Di) = 0 and when num(T ) = size(T ), �(Di) = size(T ).
The table is at least 1=3 �lled at any time, so that num(T ) � size(T )=3, and num(T ) �
size(T ) since when num(T ) = size(T ) a new table is created at the next insertion, thus
�(Di) � 0 for all i.

To prove the same amortized cost as in (b), we consider the two possible cases when per-
forming an insert operation. If the table is not full, we have

ai+1 = ci+1 + �(Di+1)� �(Di)

= 1 + 3=2 (num(T ) + 1� size(T )=3)� 3=2 (num(T )� size(T )=3)

= 5=2:

If the table is full (i.e. num(T ) = size(T )),

ai+1 = ci+1 + �(Di+1)� �(Di)

= num(T ) + 1 + 3=2 (num(T ) + 1� size(T ))� 3=2 (num(T )� size(T )=3)

= 5=2 + num(T )� size(T )

= 5=2:

6


