
CPS 130 Homework 16 - Solutions

1. (CLRS 17.2-1) A sequence of stack operations is performed on a stack whose size never
exceeds k. After every k operations, a copy of the entire stack is made for backup purposes.
Show that the cost of n stack operations, including copying the stack, is O(n) by assigning
suitable amortized costs to the various stack operations.

Solution: Assign the following amortized costs:

Push 3
Pop 1
Multipop 1

Push uses one credit to pay for itself and saves one credit for future pops and one for
copying the stack. Pop andMultipop pay for their operations using saved Push credits
and save a credit for stack copying. After k operations, we have saved k credits exclusively
for stack copying and can copy the stack for free. Since each operation costs at most O(1)
amortized and the credits are nonnegative, the cost for n operations is O(n).

2. A sequence of n operations is performed on a data structure. The ith operation costs i if
i is a power of 2, and 1 otherwise. Using the accounting method, determine the amortized
cost per operation.

Solution: Charge three credits for every operation. The amortized cost per operation is
now O(1). We show that this will always leave us with a non-negative amount of credits,
even after expensive operations. It is clear that if i is not a power of 2, one credit pays
for the operation and two credits are saved. By induction we will show if we can pay for
n = 2k operations without running into debt, we can pay for n = 2k+1 operations.

Induction: For the base case, we can pay for n = 1 = 20 operations since we charge the
�rst operation three and it only costs one. Assume we can pay for n = 2k operations for
some k. Then the cost needed to pay for n = 2k+1 operations is C1+C2+C3. C1 is the cost
for operation 2k+1 which is 2k+1. C2 is the cost of the operations 2

k+1 through 2k+1� 1.
Since each of these operations cost one and there are 2k � 1 such ops, C2 = 2k � 1. C3 is
the cost of the �rst 2k operations. By our inductive hypothesis, C3 is paid for. We must
pay C1 +C2 = 2k+1 + 2k � 1 for the remaining operations. The 2k operations between 2k

and 2k+1 save 3 � 2k = 2 � 2k + 2k = 2k+1 + 2k > 2k+1 + 2k � 1 credits which can pay the
necessary costs and have one credit left over.


