CPS 130 Homework 11 - Solutions

1. (CLRS 11.1-4) We wish to implement a dictionary by using direct addressing on a huge
array. At the start, the array entries may contain garbage, and initializing the entire array
is impractical because of its size. Describe a scheme for implementing a direct-address
dictionary on a huge array. Each stored object should use O(1) space; the operations
SEARCH, INSERT and DELETE should take O(1) time each; and the initialization of
the data structure should take O(1) time.

(Hint: Use an additional stack, whose size is the number of keys actually stored in the
dictionary, to help determine whether a given entry in the huge array is valid or not.)

Solution: To implement a direct-address dictionary on a huge array, we initialize an
additional stack which we can use to help determine whether a given entry in the huge
array is valid or not. Call the arrays huge and stack and define a variable head, initially
-1, to point to the top of the stack array. Then head = —1 corresponds to the dictionary
being empty. Suppose we want to insert an element with key x. We increment head, set
hugelz] = head and stack[head] = x. Now suppose we want to SEARCH for an element
in the huge array with key y. Then the following conditions must be satisfied:

* 0 < hugely] < head,
e stack[hugely]] = v,

Thus SEARCH and INSERT can be done in constant time. To DELETE an element
with key x, we first SEARCH to make sure the element is in the huge array. In the
stack array we have a position that will correspond to a deleted element, so we take the
element at stack[head] and copy it to stack[huge[z]]. We set then set huge[stack[head]] =
huge[z], stack[head] = NULL and huge[z] = NULL and decrement head. DELETE is
also performed in constant time since it only involves a constant number of operations.
The initialization of the data structure is done in constant time since the allocation of
the stack takes constant time.

2. (CLRS 11.2-2) Demonstrate the insertion of the keys 5, 28,19, 15,20,33,12,17,10 into a
hash table with collisions resolved by chaining. Let the table have 9 slots, and let the
hash function be h(k) =k mod 9.

Solution: 5 hashes to 5; 28 hashes to 1; 19 hashes to 1 — collision. Put 19 at the head
of the linked list for 1. 15 hashes to 6; 20 hashes to 2; 33 hashes to 6 — collision. Put
33 at the head of the linked list for 6. 12 hashes to 3; 17 hashes to 8; 10 hashes to 1 —
collision. Put 10 at the head of the linked list for 1.



28 = 19 — 10
38
12

23
15 — 33

b~1ll~11li~

17

3. (CLRS 11.2-3) Professor Marley hypothesizes that substantial performance gains can
be obtained if we modify the chaining scheme so that each list is kept in sorted order.
How does the professor’s modification affect the running time for successful searches,
unsuccessful searches, insertions and deletions?

Solution:



