
CPS 130 Homework 11 - Solutions

1. (CLRS 11.1-4) We wish to implement a dictionary by using direct addressing on a huge
array. At the start, the array entries may contain garbage, and initializing the entire array
is impractical because of its size. Describe a scheme for implementing a direct-address
dictionary on a huge array. Each stored object should use O(1) space; the operations
SEARCH, INSERT and DELETE should take O(1) time each; and the initialization of
the data structure should take O(1) time.

(Hint: Use an additional stack, whose size is the number of keys actually stored in the
dictionary, to help determine whether a given entry in the huge array is valid or not.)

Solution: To implement a direct-address dictionary on a huge array, we initialize an
additional stack which we can use to help determine whether a given entry in the huge
array is valid or not. Call the arrays huge and stack and de�ne a variable head, initially
-1, to point to the top of the stack array. Then head = �1 corresponds to the dictionary
being empty. Suppose we want to insert an element with key x. We increment head, set
huge[x] = head and stack[head] = x. Now suppose we want to SEARCH for an element
in the huge array with key y. Then the following conditions must be satis�ed:

� 0 � huge[y] � head,

� stack[huge[y]] = y,

Thus SEARCH and INSERT can be done in constant time. To DELETE an element
with key x, we �rst SEARCH to make sure the element is in the huge array. In the
stack array we have a position that will correspond to a deleted element, so we take the
element at stack[head] and copy it to stack[huge[x]]. We set then set huge[stack[head]] =
huge[x], stack[head] = NULL and huge[x] = NULL and decrement head. DELETE is
also performed in constant time since it only involves a constant number of operations.
The initialization of the data structure is done in constant time since the allocation of
the stack takes constant time.

2. (CLRS 11.2-2) Demonstrate the insertion of the keys 5; 28; 19; 15; 20; 33; 12; 17; 10 into a
hash table with collisions resolved by chaining. Let the table have 9 slots, and let the
hash function be h(k) = k mod 9.

Solution: 5 hashes to 5; 28 hashes to 1; 19 hashes to 1 ! collision. Put 19 at the head
of the linked list for 1. 15 hashes to 6; 20 hashes to 2; 33 hashes to 6 ! collision. Put
33 at the head of the linked list for 6. 12 hashes to 3; 17 hashes to 8; 10 hashes to 1 !
collision. Put 10 at the head of the linked list for 1.



0 =
1 ! 28 ! 19 ! 10
2 ! 38
3 ! 12
4 =
5 ! 23
6 ! 15 ! 33
7 =
8 ! 17

3. (CLRS 11.2-3) Professor Marley hypothesizes that substantial performance gains can
be obtained if we modify the chaining scheme so that each list is kept in sorted order.
How does the professor's modi�cation a�ect the running time for successful searches,
unsuccessful searches, insertions and deletions?

Solution:

2


