
DP Example 2: Rod cutting
Module 4: techniques

The problem: We are given a long steel rod and we need to cut it into shorter rods which we
then sell. Making each cut is free and all rod lengths are always integers. Assume we are given,
for each i = 1, 2, 3, ..., the price pi (in dollars) that we can sell a rod of length i. Goal: Given a
rod of length n inches and a table of prices pi for i = 1, 2, 3, ..., n, determine the maximal revenue
obtainable by cutting up the rod and selling the pieces.

Example: Find the maximal revenue for a rod of length n = 10 obtainable with the prices
below.

length 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 19 17 17 20 24 30

First steps, towards understanding the problem: Draw all possible ways a rod of length
n can be cut, for n = 1, 2, 3, 4. Write down the revenue of the cut in each case.

n = 1

n = 2

n = 3

n = 4
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Question: How many different cuts for a rod of length n?

Answer: You have the choice of n−1 cuts: you can cut at distance 1, 2, ..., n−1 from the beginning
of the rod. Can view each cut as a binary variable, with values 0 (no cut) or 1 (cut). There are
2n−1 different combinations. Each one corresponds to a different way to cut the rod (but note that
different cuts might result in the same set of rods, and thus have the same cost).

Notation. This problem has one parameter, which is the size of the rod. When we make a cut,
we get segments of smaller sizes. We denote by rn or r(n) the maximal revenue obtainable by
cutting up a rod of length n.

Optimal substructure: Assume someone told us that the first (left-most) cut in the optimal
solution was at distance i from the beginning; thus the first piece has length i.
Claim: Then it has to be that r(n) = pi + r(n− i). In other words, the optimal revenue consists of
the price of that first piece pi plus the optimal revenue obtainable for the remaining rod. Basically
this says that if we want maximal revenue for a rod of length n, once we determined a cut, we want
maximal revenue for the remaining piece.
Proof: By contradiction.. Assume r(n) = pi +x. If x < r(n− i) then we found a better revenue for
a rod of length n− i which is not possible, because r(n− i) represents the optimal cost obtainable
from a rod of length n− i.

Recursive formulation: Once we established that the problem has optimal substructure (the
optimal solution consists of optimal solutions to sub-problems), we can use it in the following way:

If we knew where the first (leftmost) cut was, we’d recurse from there. But we don’t know
where the first cut is, so, so we have to consider all options: the first cut can be at distance 1 from
the start, or at distance 2, or 3, ...., or n (in this case, there is no cut). The maximal revenue is
the largest revenue obtainable by one of these choices. Thus we get

rn = max{p1 + r(n− 1), p2 + r(n− 2), ...., pi + r(n− i), ..., pn−1 + r(1), pn}

Implementation: Write down pseudo-code that finds the maximal revenue rn:

//returns the maximum revenue obtainable from a rod of size n

//assume that the price table p[] is given as a global variable

int maxrev(n)
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Draw the recursion tree for n = 4.

Analysis: Write a recurrence for the running time T (n) of your recursive algorithm maxrev(n)
and show that it is exponential T (n) = Ω(2n/2).

Question: Why is maxrev(n) inneficient?
Answer: How many different sub-problems are there in total, and can a problem be solved
multiple times?
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Rod cutting: DP solution with memo-ized recursion

Analysis:
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Rod cutting: iterative DP solution

Analysis:
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From optimal revenue to optimal cuts

Describe how to augment your solution for the rod cutting problem so that it computes the actual
cuts corresponding to the optimal revenue, instead of just the revenue.
For example, let’s say that the optimal revenue for a rod of length 12 was achieved by cutting the
rod at {5, 5, 2}. Show how to compute these cuts.
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