1 Rod cutting

- The problem: Given a rod of length n and a table of prices $p[i]$ for $i=1,2,3, \ldots, n$, determine the maximal revenue obtainable by cutting up the rod and selling the pieces.
- Notation and choice of subproblem: We denote by $\operatorname{maxrev}(x)$ the maximal revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev (n).
- Recursive definition of maxrev (n) :
$\operatorname{maxrev}(x)$
if $(x \leq 0)$: return 0
For $\mathrm{i}=1$ to n : compute $p[i]+\operatorname{maxrev}(x-i)$ and keep track of max
RETURN this max
- Correctness: see notes.
- Dynamic programming solution, top-down with memoization:

We create a table of size $[0 . . n]$, where table $[i]$ will store the result of $\operatorname{maxrev}(i)$. We initialize all entries in the table as 0 . To solve the problem, we call $\operatorname{maxrev} D P(n)$.

maxrevDP (x)

if $(x \leq 0)$: return 0
IF table $[x] \neq 0$: RETURN table $[x]$
For $\mathrm{i}=1$ to n : compute $p[i]+\operatorname{maxrevDP}(x-i)$ and keep track of max
table $[x]=\max$
RETURN table $[x]$

- Dynamic programming, bottom-up:

maxrevDP_iterative(x)

create table $[0 . . n]$ and initialize table $[i]=0$ for all i
for ($k=1 ; k \leq n ; k++$)

$$
\begin{aligned}
& \text { for }(i=1 ; i \leq k ; i++) \\
& \quad \text { set } \text { table }[k]=\max \{t a b l e[k], p[i]+\text { table }[k-i]\}
\end{aligned}
$$

RETURN table[n]

- Analysis: $O\left(n^{2}\right)$
- Computing full solution:

