Divide-and-conquer
 Module 4: Techniques

1 Overview

We have seen several problems so far whose solutions look very similar. This week we introduce a general technique called divide-and-conquer. It is a powerful tecnique which yields elegant solutions to many problems. We'll explore this technique by seeing it in action on a couple of problems.

2 Divide-and-conquer

Let's assume, generically, that we want to solve a problem P. A divide-and-conquer (D\&CC) solution for P would look as follows:

Input: Problem P
Algorithm divideAndConquer (P) :

1. Base case: if size of P is small, solve it (e.g. brute force) and return solution //else:
2. Divide: divide P into smaller problems P_{1}, P_{2}
3. Conquer: solve the smaller subproblems recursively, by calling divideAndConquer $\left(P_{1}\right)$ and divideAndConquer $\left(P_{1}\right)$
4. Combine: combine solutions to P_{1}, P_{2} into solution for P .

3 Example 1: Mergesort

- We've already seen a divide-and-conquer algorithm: It's Mergesort!

Mergesort an array of n elements:

- Base-case: if size of input is 1 , return
- Else:
* Divide: Divide the array into two arrays of $n / 2$ elements each
* Conquer: Sort the two arrays recursively
* Combine: Merge the two sorted arrays of $n / 2$ elements into one sorted array of size n
- Analysis: $T(n)=2 T(n / 2)+\Theta(n)$, which solves to $T(n)=\Theta(n \lg n)$

4 Example 2: Multiplying large integers

- The problem: We want to write an algorithm to multiply arbitrarily large numbers.
- Example: $\mathrm{A}=13519384653184763746$ and $\mathrm{B}=32875641827561875665$
- A and B cannot be represented as integers, because an integer (in any programming language) has a fixed precision. Basically in any programming language, an integer is represented on 4 bytes, which is 32 bits. Assuming the integer is unsigned, if all these bits are used for the value, the largest bvalue representable on 32 bits is $11111111 \ldots 11$ which is $1+2+2^{2}+2^{3}+\ldots+2^{31}=$ $2^{32}-1$ which is approx. 4 billion. So the largest integer in the computer is $4 \cdot 10^{9}$. If you want larger values you need to use special libraries for large numbers-which do what we'll do in this problem, represent values as arbitrarily long arrays of digits.
- So: we assume we are given two numbers, A and B, each one represented on n digits. We'll assume the digits are given as arrays:

$$
A=\left[A_{0}, A_{1}, A_{2} \ldots, A_{n-1}\right], B=\left[B_{0}, B_{1}, B_{2} \ldots, B_{n-1}\right]
$$

- We want to write an algorithm to compute the product of A and $B: C=A \times B$
- How do you compute C ? Let's see an example.
- Example: $A=357, B=125$. We could do what we learnt in school, multiply each digit in A by each digit in B, and then add the results. Let's assume that the multiplication of two one-digit numbers takes $\Theta(1)$ time. When A and B have n digits each, this procedure we learnt in school would take $O\left(n^{2}\right)$ time. Right? Right.
- With our "algorithms hat" on, we ask the usual question: Can we do better than quadratic?

4.1 Towards a divide-and-conquer approach

- Let's try a divide-and-conquer approach. The problem for us is multiplying n-digit numbers. A half-problem woud be multiplying numbers represented on $n / 2$-digits. We would need to frame the multiplication of two n-digit numbers in terms of multiplying two $n / 2$-digit numbers. Let's see.
- Example: $A=1427$ and $B=3659$, with $n=4$ digits. Let's split A and B into two halves: $A=1400+27=14 \cdot 10^{2}+27$, and $B=3600+59=36 \cdot 10^{2}+59$. Right?
- So we can say that $A \times B=\left(14 \cdot 10^{2}+27\right) \times\left(36 \cdot 10^{2}+59\right)=14 \times 36 \cdot 10^{4}+(27 \times 36+$ $59 \times 14) \cdot 10^{2}+59 \times 27$. We expressed the product of two 4 -digit numbers in terms of four products of 2 -digit numbers, and 3 additions of 4 -digit numbers. We're getting there!
- Let's generalize: Let's denote by A^{\prime} the first half of A and by A " the second half of A, that is: $A=\left[A^{\prime} A^{\prime \prime}\right]$, where $A^{\prime}=\left[A_{0}, A_{1}, \ldots A_{n / 2}\right]$ and $A^{\prime \prime}=\left[A_{n / 2+1}, \ldots, A_{n-1}\right]$. We get that

$$
A=A^{\prime} \cdot 2^{n / 2}+A^{\prime \prime}
$$

- Remember we're working in base-2, everything is the same as in base 10 , except with 2 instead of 10 . For e.g. $1001_{2}=\left(10 \cdot 2^{2}+01\right)_{2}=\left(2 \times 2^{2}+1\right)_{10}=\left(2^{3}+1\right)_{10}=9_{10}$
- Similarly, Let's denote by B^{\prime} the first half of B and by $B^{\prime \prime}$ the second half of B, that is: $B=\left[B^{\prime} B^{\prime \prime}\right]$, where $B^{\prime}=\left[B_{0}, B_{1}, \ldots B_{n / 2}\right]$ and $B "=\left[B_{n / 2+1}, \ldots, B_{n-1}\right]$. We get that

$$
B=B^{\prime} \cdot 2^{n / 2}+B "
$$

- Now we can write

$$
A \times B=\left(A^{\prime} \cdot 2^{n / 2}+A^{\prime \prime}\right) \times\left(B^{\prime} \cdot 2^{n / 2}+B^{\prime \prime}\right)
$$

- Opening the parenthesis we get:

$$
A \times B=A^{\prime} \times B^{\prime} \times 2^{n}+\left(A^{\prime} \times B^{\prime \prime}+A^{\prime \prime} \times B^{\prime}\right) \times 2^{n / 2}+A^{\prime \prime} \times B^{\prime \prime}
$$

- What does this mean? To compute $A \times B$, the product of two n-digit numbers, we need to compute:

1. We need to compute 4 products of two $n / 2$-digit numbers: $A^{\prime} \times B^{\prime}, A^{\prime} \times B^{\prime \prime}, A^{\prime \prime} \times B^{\prime}$ and $A^{\prime} \times B^{\prime \prime}$.
2. We need to compute three sums of $\Theta(n)$-digit numbers (there are three " + " signs in the expression above). Adding two n-digit numbers can be done in $\Theta(n)$-time, by using the obvious algorithm (add two digits one at a tiime, going from right to left).
3. Multiplying by a power of 2 (in base-2) means shifting to the left that many bits, and adding trailing 0 s . That can be done in linear time in terms of the number of bits in our number and the exponent. So multiplying $A^{\prime} \times B^{\prime}$ by 2^{n} runs in the total number of bits in $A^{\prime} \times B^{\prime}$ plus n, which is $\Theta(n)$.
4. Similarly, multiplying $\left(A^{\prime} \times B^{\prime \prime}+A^{\prime \prime} \times B^{\prime \prime}\right)$ by $2^{n / 2}$ runs in $\Theta(n)$ time.

- So overall we expressed $A \times B$ as four products of $n / 2$-digit numbers; once these products are known, it takes $\Theta(n)$ work to figure out $A \times B$.
- Let $T(n)$ be the running time for computing the product of two n-digit numbers. Then we can write that $T(n)=4 T(n / 2)+\Theta(n)$
- The recurrence solves to $\Theta\left(n^{2}\right)$ time.
- Exercise: Solve the recurrence
- Really?
- Really. We get the same quadratic time as with the "straightforward" algorithm! Worse actually, because of recursion overhead.

4.2 Karatsuba's idea

- Still, the idea can be used to get a better algorithm.
- How? If we could express $A \times B$ in terms of only three products of $n / 2$-digit numbers, We would get the recurrence $T(n)=3 T(n / 2)+\Theta(n)$, which solves to $\Theta\left(n^{l g 3}\right)=n^{1.584} \ll n^{2}$
- But... How ??!
- Remember that

$$
A \times B=A^{\prime} \times B^{\prime} \cdot 2^{n}+\left(A^{\prime} \times B^{\prime \prime}+A^{\prime \prime} \times B^{\prime}\right) \cdot 2^{n / 2}+A^{\prime \prime} \times B^{\prime \prime}
$$

We need $A^{\prime} \times B^{\prime}, A^{\prime} \times B^{\prime \prime}+A^{\prime \prime} \times B^{\prime}$ and $A^{\prime \prime} \times B^{\prime \prime}$

- Karatsuba observed that we can compute $A^{\prime} \times B^{\prime \prime}+A " \times B^{\prime}$ in terms of the other two products but with some additional additions/subtractions:

$$
A^{\prime} \times B^{\prime \prime}+A^{\prime \prime} \times B^{\prime}=\left(A^{\prime}+A^{\prime \prime}\right) \times\left(B^{\prime}+B^{\prime \prime}\right)-A^{\prime} \times B^{\prime}-A " \times B^{\prime \prime}
$$

- Therefore we would need only three products:
$A^{\prime} \times A^{\prime \prime}, B^{\prime} \times B^{\prime \prime}$ and $\left(A^{\prime}+A^{\prime \prime}\right) \times\left(B^{\prime}+B^{\prime \prime}\right)$
- The algorithm:

IntegerMultiply (A, B):

- Divide A and B into halves: $A^{\prime}, A^{\prime \prime}, B^{\prime}, B^{\prime \prime}$
- Compute three $n / 2$-digit products recursively, namely let $Z_{1}=A^{\prime} \times B^{\prime}, Z_{2}=A^{\prime \prime} \times B^{\prime \prime}$ and $Z_{3}=\left(A^{\prime}+A^{\prime \prime}\right) \times\left(B^{\prime}+B^{\prime \prime}\right)$
- Combine results by doing a bunch of additions and subtractions and shifts, namely $Z_{3}=Z_{3}-Z_{1}-Z_{2}$ $Z=Z_{1} \times 2^{n}+Z_{3} \times 2^{n / 2}+Z_{2}$
- Return Z as the result
- We get the recurrence $T(n)=3 T(n / 2)+\Theta(n)$, which solves to $\Theta\left(n^{l g 3}\right)=n^{1.584}$
- Self-study exercise: Consider two numbers on 4 digits each, and compute their product using Karatsuba's algorithm; use base-10 for simplicity.

5 Example 3: Matrix Multiplication

Let X and Y be two $n \times n$ matrices:

$$
\begin{aligned}
& X=\left\{\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{1 n} \\
x_{31} & x_{32} & \cdots & x_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right\} \\
& Y=\left\{\begin{array}{llll}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{1 n} \\
y_{31} & y_{32} & \cdots & y_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
y_{n 1} & y_{n 2} & \cdots & y_{n n}
\end{array}\right\}
\end{aligned}
$$

We want to compute the product $Z=X \cdot Y$, which is defined as $z_{i j}=\sum_{k=1}^{n} X_{i k} \cdot Y_{k j}$

- The straightfoward algorithm: For every $\mathrm{i}=1$ to n , for every $\mathrm{j}=1$ to n , compute $z_{i j}$ as the $\operatorname{sum} \sum_{k=1}^{n} X_{i k} \cdot Y_{k j}$
- Analysis: There are n^{2} elements, and each one needs a loop to calculate $\Rightarrow n^{2} \cdot n=\Theta\left(n^{3}\right)$
- Can we do better? That is, is it possible to multiply two matrices faster than $\Theta\left(n^{3}\right)$?
- This was an open problem for a long time... until Strassen came up with an algorithm in 1969. His idea was to use divide-and-conquer.

5.1 Towards matrix multiplication via divide-and-conquer

- Let's imagine that n is a power of two. We can view each matrix as consisting of four $n / 2$-by- $n / 2$ matrices.

$$
X=\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\}, Y=\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}
$$

- Their product $X \cdot Y$ can be written as:

$$
\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{ll}
(A \cdot E+B \cdot G) & (A \cdot F+B \cdot H) \\
(C \cdot E+D \cdot G) & (C \cdot F+D \cdot H)
\end{array}\right\}
$$

- This leads to a divide-and-conquer solution:

MatrixMultiply (X, Y):

- Divide X and Y into eight sub-matrices A, B, C, D, E, F, G, H.
- Compute eight $n / 2$-by- $n / 2$ matrix multiplications recursively, namely $A \cdot E, B \cdot G, A$. $F, B \cdot H, C \cdot E, D \cdot G, C \cdot F, D \cdot H$
- Combine results (by doing 4 matrix additions) and copy the results into a matrix Z
- Return matrix Z as the result

ANALYSIS:

- Adding two n-by- n matrices runs in $\Theta\left(n^{2}\right)$ time.
- The running time is given by $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$, which solves to $T(n)=\Theta\left(n^{3}\right)$
- Cool idea, but not so cool result......since we already discussed that the straightforward algorithm runs in $O\left(n^{3}\right)$
- Can we do better?

5.2 Strassen's matrix multiplication algorithm

- Strassen's algorithm is based on the following observation:

The recurrence

$$
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)
$$

while the recurrence

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)
$$

- Strassen found a very clever way to express $X \cdot Y$ in terms of only seven products of $n / 2$ -by- $n / 2$ matrices
- With same notation as before, we define the following seven $n / 2$-by- $n / 2$ matrices:

$$
\begin{aligned}
& S_{1}=(B-D) \cdot(G+H) \\
& S_{2}=(A+D) \cdot(E+H) \\
& S_{3}=(A-C) \cdot(E+F) \\
& S_{4}=(A+B) \cdot H \\
& S_{5}=A \cdot(F-H) \\
& S_{6}=D \cdot(G-E) \\
& S_{7}=(C+D) \cdot E
\end{aligned}
$$

- Strassen observed that we can write the product Z as:

$$
Z=\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{cc}
\left(S_{1}+S_{2}-S_{4}+S_{6}\right) & \left(S_{4}+S_{5}\right) \\
\left(S_{6}+S_{7}\right) & \left(S_{2}+S_{3}+S_{5}-S_{7}\right)
\end{array}\right\}
$$

- For e.g. let's test that $S_{6}+S_{7}$ is really $C \cdot E+D \cdot G$

$$
\begin{aligned}
S_{6}+S_{7} & =D \cdot(G-E)+(C+D) \cdot E \\
& =D \cdot G-D \cdot E+C \cdot E+D \cdot E \\
& =D \cdot G+C \cdot E
\end{aligned}
$$

- This leads to a divide-and-conquer algorithm:

StrassenMM(X, Y):

- Divide X and Y into 8 sub-matrices A, B, C, D, E, F, G, H.
- Compute $S_{1}, S_{2}, S_{3}, \ldots, S_{7}$. This step involves 10 matrix additions and 7 multiplications (which are computed recursively).
- Compute $S_{1}+S_{2}-S_{4}+S_{6}, S_{4}+S_{5}, S_{6}+S_{7}$ and $S_{2}+S_{3}+S_{5}-S_{7}$ and copy them in Z. This step involves 8 additions/subtractions of $n / 2$-by- $n / 2$ matrices.

ANALYSIS:

- All additions/subtractions/copying can be done in $\Theta\left(n^{2}\right)$ time
- Overall there are (only) 7 recursive calls
- The running time is given by $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$, which solves to $O\left(n^{\lg 7}\right)$.
- Lets solve the recurrence using the iteration method

$$
\begin{aligned}
T(n) & =7 T(n / 2)+n^{2} \\
& =n^{2}+7\left(7 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2}\left(7 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} \cdot n^{2}+7^{3} T\left(\frac{n}{2^{3}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} n^{2}+\left(\frac{7}{2^{2}}\right)^{3} n^{2} \ldots+\left(\frac{7}{2^{2}}\right)^{\lg n-1} n^{2}+7^{\lg n} \\
& =\sum_{i=0}^{\lg n-1}\left(\frac{7}{2^{2}}\right)^{i} n^{2}+7^{\lg n} \\
& =n^{2} \cdot \Theta\left(\left(\frac{7}{2^{2}}\right)^{\lg n-1}\right)+7^{\lg n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\lg n}}{\left(2^{2}\right)^{\lg n}}\right)+7^{\lg n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\lg n}}{n^{2}}\right)+7^{\lg n} \\
& =\Theta\left(7^{\lg n}\right) \\
& =n^{\lg 7}
\end{aligned}
$$

So the solution is $T(n)=\Theta\left(n^{\lg 7}\right)=\Theta\left(n^{2.81 \ldots}\right)$

Some comments

- Strassen's algorithm "hides" a much bigger constant in $\Theta()$ than the straightfoward cubic algorithm.
- Currently the best known bound for matrix multiplication is $O\left(n^{2.376 . .}\right)$ by Coppersmith and Winograd, 1978.
- The lower bound is (trivially) $\Omega\left(n^{2}\right)$.
- Improving matrix multiplication is still a big open problem!
- In practice: Strassen's algorithm is efficient in practice once n is large enough. For small values of n the straightforward cubic algorithm is used instead. The crossover point where Strassen starts beating the cubic algorithm depends on the platform and needs to be determined empirically.
- Large integer multiplication: a couple of algorithms have been developped which improve on Karatsuba; there is an algorithm by Schonhage and Strassen (1971) that runs in $O(n \lg n \lg \lg n)$; in 2007 a new algorithm was published which has a theoretically better upper bound of $O\left(n \lg n \cdot 2^{O\left(\log ^{*} n\right)}\right)$; several improvements to this algorithm were published in the last 10 years, culminating with an $O(n \lg n)$ algorithm proposed in 2019 by Harvey and Van Der Hoeven; because Strassen conjectured that $\Omega(n \lg n)$ is a lower bound, this last algorithm is believed to be optimal.

These algorithms are faster than Karatsuba for very very large values of n. For small values of n Karatsuba is fastest.

