
Topologically Sorting a Directed Acyclic Graph
Module 5: Graphs

1 Overview

Today we talk about topological sort. Topological sort is defined on directed graphs which do
not have cycles (called: directed acyclic graphs); it corresponds to ordering the vertices in such a
way such that the edges go “forward”. If we think of edges as representing precendence, i.e. the
start point must come before the endpoint, then a topological sort assures that all the edges are
“fullfilled”. Topological sort is a very useful concept on directed acyclic graphs. Many problems
admit simpler and faster solutions on this class of graphs, and the solutions involve in one way
or another the fact that an acyclic graph can be topologically sorted. For example, we’ll see that
computing shortest paths on directed acyclic graphs can be done in linear time; also the problem
of computing longest paths, which is known to be NP-complete on general graphs, can be solved
in linear time on directed acyclic graphs.

2 Topological Sort: The problem

• A topological sorting of a directed acyclic graph G = (V,E) is a linear ordering of vertices V
such that for any edge (u, v) ∈ E, vertex u appears before v in this ordering.

• We think of an edge (u, v) as meaning that u has to come before v—thus an edge defines a
precedence relation. A topological order is an order of the vertices that satisfies all the edges.

• Example: Dressing (arrow implies “must come before”)
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We want to compute order in which to get dressed. One possibility:

Socks

98765

Shirt
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Underwear Pants Shoes Watch Belt Tie Jacket

1 2 3

The given order is one possible topological order (Note: A graph may have many different
topological orders; we want to compute one of them).

3 Does a tpopological order always exist?

• If the graph has a cycle, a topological order cannot exist. Imagine the simplest cycle,
consisting of two edges: (a, b) and (b, a). A topological ordering , if it existed, would have to
satisfy that a must come before b and b must come before a. This is not possible.

• Now consider we have a graph without cycles; this is usually referred to as a DAG (directed
acyclic graph). Does any DAG have a topological order?

The answer is YES. We’ll prove this below indirectly by showing that the toposort algorithm
always gives a valid ordering when run on any DAG.

4 Algorithms for computing a topological order

We’ll see two algorithm for computing a topological order, both of which run in linear time O(V +E).
The first one uses DFS, and teh second one is standalone.

4.1 Topological sort via DFS

TopologicalSort-using-DFS(graph G):

1. Call DFS(G) to compute start and finish times for all vertices in G.

2. Return the list of vertices in reverse order of their finish times. That is, the
vertex finished last will be first in the topological order, and so on.

Correctness: Why does this work?

Claim: The vertex finished last by DFS cannot have any incoming edges.

More generally we can prove that:

Claim: Suppose DFS(G) is run on DAG G. If G contains an edge (u, v), then the finish time of
u is larger than the finish time of v; in other words, u is finished after v.
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Proof: Consider edge (u, v). When this edge is explored, v cannot be GRAY, because in that
case v would be an ancestor of u and (u, v) would be a back edge meaning a cycle would exist.
So v has to be either BLACK or WHITE. If v is WHITE, it becomes a descendant of u, and it is
finished before u is finished. If v is BLACK, it’s already been finished so u will be finished after v.
Thus for any edge (u, v) we have that u is finished after v is finished.

Analysis: Computing topological order via DFS runs in O(V + E) time.

4.2 A standalone algorithm for topological sort

Intuitively, in order to sort topologically, we want to start with a vertex that has no incoming edges.
This suggests the following algorithm:

TopologicalSort(graph G)

• find a vertex with no incoming edges, put it in the output;

• delete all its outgoing edges;

• repeat.

Correctness: Clearly, a vertex without incoming edges can be first on topological order. But,
is such a vertex guaranteed to exist? What about in the loop?

Claim: A directed acyclic graph always contains a vertex of indegree zero.

Proof: Assume by contradiction that all vertices in G have at least one incoming edge. Consider
an arbitrary vertex v; it must have an incoming edge, call it (v1, v); u must have an incoming edge,
(v2, v1); v2 must have an incoming edge, call it (v3, v2); and so on, we can do this forever; since the
graph is finite, this means at some point we must hit the same vertex =⇒ cycle. Contradiction. So
it must be that not all vertice have an incoming edge, that is, there must exist at least one vertex
with no incoming edges.

Analysis: A straightforward implementation of the algorithm above spends O(V ) to find a
vertex with no incoming edges; this results in O(V 2) total time.

Self-study problem: Implement the algorithm above in time O(|V |+ |E|).
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