Graph Basics
 \author{ Module 5: Graphs

}

Overview

Once you learn about graphs, you realize that graphs are everywhere around us. We can model pretty much anything with a graph! In this lecture we introduce the concept of graph, talk about graph representation and introduce basic basic problems on graphs.

What is a graph?

- A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E
- Vertices are objects and edges model relationships
- E.g: graphs can model a network of people, where edges mean friendships
- There are two types of graphs: directed and undirected
- Directed graph: E is a set of ordered pairs of vertices (u, v) where $u, v \in V$

$$
\begin{aligned}
\mathrm{V}= & \{1,2,3,4,5,6\} \\
\mathrm{E}= & \{(1,2),(2,2),(2,4),(2,5) \\
& (4,1),(4,5),(5,4),(6,3)
\end{aligned}
$$

- Undirected graph: E is a set of unordered pairs of vertices $\{u, v\}$ where $u, v \in V$

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,5\},\{2,5\},\{3,6\}\}
\end{aligned}
$$

- Note: Some definitions do not allow self loops (because graphs are simpler to work with).
- Often the edges in a graph have weights (e.g. road networks have distances); more on this later

Examples

- Graphs come up everywhere!!
- E.g.: road networks (vertices are intersections, edges are streets); social graphs (vertices are people, edges are "friends" relationshipis); WWW graph (webpages and hyperlinks); twitter graph (people/accounts and the "follow" relations); internet (servers and cables); financial graphs (stocks and transactions); neural networks (neurons, synapses); and many, many more
- Some example of questions we can ask on graphs:
- Is it directed or undirected? (if I am your friend, does it mean you are my friend?)
- Are two people friends? How close?
- Who is a "star"? What is a "star"?
- Am I linked by some chain of friends to a "star"?
- Is there a path between any two people in the graph?
- Who has the most friends?
- What is the largest clique (i.e. group of friends such that everyone is friends with everyone else)?
- What is the shortest route between two vertices?
- Can a web crawler reach the whole WWW?
- If a certain server goes down, does that disconnect the network?

More Definitions and Terminology

Undirected graphs

- Edge (u, v) is said to be incident on u and v
- The degree of vertex is the number of edges incident to it.
- Paths: A path from u_{1} to u_{2} is a sequence of vertices $<u_{1}=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=u_{2}>$ such that $\left(v_{i}, v_{i+1}\right) \in E$. If $v_{0}=v_{k}$ then it is a cycle. The length of a path is the number of edges on it.
- Two vertices are connected if there is a path between them in G
- Connectivity (in undirected graphs only): An undirected graph is connected if every pair of vertices are connected by a path
- A graph consists of connected components: A connected component of an undirected graph is a set of vertices such that any two vertices are connected by a path.
- An undirected graph is called a tree if there is a single path between any two vertices in G.
- It can be shown that a tree is connected, has no cycles, and the number of edges is precisely $|E|=|V|-1$ (actually it can be shown that any two of these properties implies the third one).

Directed graphs (digraphs)

- A directed edge (u, v) is outgoing from u and incoming into v
- In (out) degree of a vertex is the number of edges entering (leaving) it.
- Paths: A path from u_{1} to u_{2} is a sequence of vertices $<u_{1}=v_{0}, v_{1}, v_{2}, \cdots, v_{k}=u_{2}>$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$. If $v_{0}=v_{k}$ then it is a cycle. The length of a path is the number of edges on it.
- Reachability: if there is a path from u_{1} to u_{2} we write $u_{1} \rightsquigarrow u_{2}$ and we say that u_{2} is reachable from u_{1}
- A directed graph is strongly connected if every pair of vertices are reachable from each other
- A digraph consists of strongly connected components: A strongly connected component of a graph is a set of vertices such that between any two vertices are mutually reachable from each other

Graph Size

- We will express the space and time complexity of graph algorithms in terms of $|V|$ and $|E|$, often dropping the |'s.
- The standard notation is $|V|=n$ and $|E|=m$
- From an analysis point of view, it is important to understand the relation between $|V|$ and $|E|$, and their bounds.
- The number of edges in a graph can be as little as $0:|E| \geq 0$
- The largest number of edges in a graph is $|E|=O\left(|V|^{2}\right)$. The exact count depends on whether the graph is directed or not, and if self loops are allowed.
- Remember that a tree of V vertices has $|E|=|V|-1$ edges; that's $|E|=\Theta(|V|)$
- In general, if $|E|=\Theta\left(|V|^{2}\right)$ the graph is said to be dense
- If $|E|=\Theta(|V|)$ the graph is said to be sparse

Graph representation

A graph can be represented as an adjacency list or adjacency matrix.

- Adjacency-list representation: Array of size $|V|$, each vertex stores its list of outgoing edges

Examples:

1	$\rightarrow 2 \rightarrow 5$
2	$\rightarrow 1 \rightarrow 5$
3	$\rightarrow 6$
4	
5	$\rightarrow 2 \rightarrow 1$
6	$\longrightarrow 3$

- Note: For undirected graphs, every edge is stored twice.
- If graph is weighted, a weight is stored with each edge.
- Space: $\Theta(|V|+|E|)$
- Adjacency-matrix representation: $|V| \times|V|$ matrix A where

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Examples:

- Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal ($A^{T}=A$).
- If graph is weighted, weights are stored instead of one's.
- Space: $\Theta\left(|V|^{2}\right)$
- Comparison of matrix and list representation:

Adjacency list	Adjacency matrix
$\Theta(\|V\|+\|E\|)$ space	$\Theta\left(\|V\|^{2}\right)$ space
Good if graph sparse $\left(\|E\| \ll\|V\|^{2}\right)$	Good if graph dense $\left(\|E\| \approx\|V\|^{2}\right)$ No quick access to (u, v)
$O(1)$ access to (u, v)	

- We will use adjacency list representation unless stated otherwise $(\Theta(|V|+|E|)$ space $)$.
- Interestingly, many/most large graphs in real-life are sparse (internet, social networks, etc).

