Dynamic Programming and Greedy: Review

Examples in lectures and labs so far

Dynamic programming:

- Playing a board game
- Rod cutting
- Knapsack
- Pharmacist
- Fibonacci
- Longest TRUE interval
- LCS (longest common subsequence) -- skip ?
- Robbing a house
- Optional: Playing a game
- Longest increasing subsequence
- Unbounded knapsack
- (Optional: Skis and skiers)

Greedy:

- Activity selection
- Guarding a museum
- A different pharmacist problem (all bottles have same cost)
- (Optional: Matching points on a line; Greedy skis and skiers)

1 Rod cutting

- The problem: Given a rod of length n and a table of prices $p[i]$ for $i=1,2,3, \ldots, n$, determine the maximal revenue obtainable by cutting up the rod and selling the pieces.
- Notation and choice of subproblem: We denote by $\operatorname{maxrev}(x)$ the maximal revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev (n).
- Recursive definition of maxrev (n) :
$\operatorname{maxrev}(x)$
if $(x \leq 0)$: return 0
For $\mathrm{i}=1$ to n : compute $p[i]+\operatorname{maxrev}(x-i)$ and keep track of max
RETURN this max
- Correctness: see notes.
- Dynamic programming solution, top-down with memoization:

We create a table of size $[0 . . n]$, where table $[i]$ will store the result of $\operatorname{maxrev}(i)$. We initialize all entries in the table as 0 . To solve the problem, we call $\operatorname{maxrev} D P(n)$.

maxrevDP (x)

if $(x \leq 0)$: return 0
IF table $[x] \neq 0$: RETURN table $[x]$
For $\mathrm{i}=1$ to n : compute $p[i]+\operatorname{maxrevDP}(x-i)$ and keep track of max
table $[x]=\max$
RETURN table $[x]$

- Dynamic programming, bottom-up:

maxrevDP_iterative(x)

create table $[0 . . n]$ and initialize table $[i]=0$ for all i
for ($k=1 ; k \leq n ; k++$)

$$
\begin{aligned}
& \text { for }(i=1 ; i \leq k ; i++) \\
& \quad \text { set } \text { table }[k]=\max \{t a b l e[k], p[i]+\text { table }[k-i]\}
\end{aligned}
$$

RETURN table[n]

- Analysis: $O\left(n^{2}\right)$
- Computing full solution:

2 0-1 Knapsack

- The problem: We are given a knapsack of capacity W and a set of n items; an each item i, with $1 \leq i \leq n$, is worth $v[i]$ and has weight $w[i]$ pounds. Assume that weights $w[i]$ and the total weight W are integers. The goal is to fill the knapsack so that the value of all items in the knapsack is maximized.
- Notation and choice of subproblem: Denote by optknapsack (k, w) the maximal value obtainable when filling a knapsack of capacity w using items among items 1 through k. To solve our problem we call optknapsack (n, W).
- Recursive definition of optknapsack (k, w) :
optknapsack (k, w)
if $(w \leq 0)$ or $(k \leq 0)$: return $0 / /$ basecase
$\operatorname{IF}($ weight $[k] \leq w):$ with $=$ value $[k]+\operatorname{optknapsack}(k-1, w-$ weight $[k])$
ELSE: with $=0$
without $=\operatorname{optknapsack}(k-1, w)$
RETURN max $\{$ with, without $\}$
- Correctness: see notes.
- Dynamic programming solution, top-down with memoization: We create a table table[1..n][1..W], where table $[i][w]$ will store the result of optknapsack (i, w). We initialize all entries in the table as 0 . To solve the problem, we call optknapsackDP($n, W)$.
optknapsackDP (k, w)
if $(w \leq 0)$ or $(k \leq 0)::$ return 0
IF (table $[k][w] \neq 0$): RETURN table $[k][w]$
IF $(w[k] \leq w):$ with $=v[k]+\operatorname{optknapsackDP}(k-1, w-w[k])$
ELSE: with $=0$
without $=\operatorname{optknapsackDP}(k-1, w)$
table $[k][w]=\max \{$ with, without $\}$
RETURN table $[k][w]$
- Dynamic programming, bottom-up:
optknapsackDP_iterative

$$
\begin{aligned}
& \text { create table }[0 . . \mathrm{n}][0 . . \mathrm{W}] \text { and initialize all entries to } 0 \\
& \text { for }(k=1 ; k<n ; k++) \\
& \qquad \text { for }(w=1 ; w<W ; w++) \\
& \quad \text { with }=v[k]+\text { table }[k-1][w-w[k]] \\
& \quad \text { without }=\text { table }[k-1][w] \\
& \quad \text { table }[k][w]=\max \{\text { with, without }\} \\
& \text { RETURN } \text { table }[n][W]
\end{aligned}
$$

- Analysis: $O(n \cdot W)$
- Computing full solution:

3 Pharmacist

- The problem: A pharmacist has W pills and n empty bottles. Bottle i can hold $p[i]$ pills and has an associated cost $c[i]$. Given $W, p[1 . . n]$ and $c[1 . . n]$, find the minimum cost for storing the pills using the bottles.
- Notation and choice of subproblem: Denote by $\operatorname{MinPill}(i, j)$ the minimum cost obtainable when storing j pills using bottles among 1 through i. To solve our problem we call $\min \operatorname{Pill}(n, W)$.
- Recursive definition of $\operatorname{minPill}(i, j)$:
$\operatorname{minPill}(i, j)$
if $(j \leq 0)$: return $0 / /$ no pills left
IF ($i==0$ and $j>0$): return $\infty / /$ have pills, but no bottles, sol not possible
with $=c[i]+\operatorname{minPill}(i-1, j-p[i])$
without $=\operatorname{minPill}(i-1, j)$
RETURN min \{ with, without \}
- Correctness:
- Dynamic programming solution, top-down with memoization: We create table[1..n][1..W], where table $[i][j]$ will store the result of $\operatorname{minPill}(i, j)$. We initialize all entries in the table as 0 . To solve the problem, we call $\operatorname{minPillDP(n,W)\text {.}}$

$\operatorname{minPillDP}(i, j)$

if $(j \leq 0)$: return $0 / /$ no pills left
IF ($i==0$ and $j>0$): return $\infty / /$ have pills, but no bottles, sol not possible
IF (table $[i][j] \neq 0$): RETURN table $[i][j]$
with $=c[i]+\operatorname{minPill} \operatorname{DP}(i-1, j-p[i])$
without $=\operatorname{minPillDP}(i-1, j)$
table $[i][j]=\min \{$ with, without $\}$
RETURN table $[i] j]$

- Dynamic programming, bottom-up:
minPill_iterative
create table $[0 . . \mathrm{n}][0 . . \mathrm{W}]$ and initialize all entries to 0
for ($i=1 ; i<n ; i++$)
for $(j=1 ; j<W ; j++)$
with $=c[i]+$ table $[i-1][j-p[i]]$
without $=$ table $[i-1][j]$
table $[i][j]=\min \{$ with, without $\}$
RETURN table[n][W]
- Analysis: $O(n \cdot W)$
- Computing full solution:

4 Longest True interval

- The problem: Suppose we are given an array $A[1 . . n]$ of booleans. We want to find the longest interval $A[i . . j]$ such that every element in the interval is true - in other words, $A[i], A[i+$ $1], . ., A[j]$ are all true.
- Notation and choice of subproblem: Denote by $G(x)$ to be the length of the longest suffix ${ }^{1}$ of $A[1 \ldots x]$ that is all true. In other words, $G(x)$ is the largest integer 1 such that $A[x-l+$ 1], $A[x-l+2], . ., A[x]$ are all true, or 0 if $A[x]$ is false.
- Recursive definition of $G(x)$:
$\mathbf{G}(x)$
IF $(x==1)$: return $A[1]$
else

$$
\text { IF } A[x]==\text { False: return } 0 \text { else return } 1+G(x-1)
$$

- Correctness:
- Dynamic programming solution, top-down with memoization: We create table[0..n], where table $[i]$ will store $G(i)$. We initialize all entries in the table as 0 . To solve the problem, we call Gwith $D P(0), G w i t h D P(1), G w i t h D P(2), \ldots$ to fill the table and then return the max element in table[1..n].

GwithDP(x)

IF $(x==1)$: return $A[1]$
else

$$
\begin{aligned}
& \text { IF }(\text { table }[x] \neq 0): \text { RETURN } \text { table }[x] \\
& \text { IF } A[x]==\text { False: answer }=0 \text { else answer }=1+\operatorname{Gwith} D P(x-1) \\
& \text { table }[x]=\text { answer } \\
& \text { return answer }
\end{aligned}
$$

- Dynamic programming, bottom-up:
- Analysis: $O(n)$
- Computing full solution:

[^0]
5 Maximum partial sum (or maximum subarray)

- The problem: We are given an array $A[1 . . n]$. We want to find the interval $i . . j$ such that the sum of the elements in the interval $A[i]+A[i+1]+\ldots .+A[j]$ is maximized. We call this value the maximum subarray sum (or maximum partial sum) of A. We want to find it, along with the indices i, j that achieve it.
- Notation and choice of subproblem: Denote by $G(x)$ the maximum subarray sum that ends at x. So basically its the largest of $\{A[x], A[x-1]+A[x], A[x-2]+A[x-1]+A[x], \ldots\}$ and so on.

Claim: The max subarray sum of A is the largest $G(x)$ for $x=1 \ldots n$.

- Correctness: The maximum subarray sum in A must end at some index j. Then $G(j)$ will store that maximum subarray sum.
- Recursive definition of $G(x)$:
$\mathbf{G}(x)$
IF $(x==1):$ return $A[1]$
else: return $\max \{G(x-1)+A[x], A[x]\}$
//if $\mathrm{G}(\mathrm{x})$ includes elements past x , those must be $\mathrm{G}(\mathrm{x}-1)$
- Dynamic programming solution, top-down with memoization:
- Dynamic programming, bottom-up:

maxsubarray_iterative()

create table $[0 . . n]$ and initialize table $[i]=0$ for all i
for $x=1 ; x \leq n ; x++$

$$
\text { table }[x]=\max \{A[x]+\text { table }[x-1], A[x]\}
$$

RETURN max entry in table[1..n]

- Analysis: $O(n)$.
- Computing full solution: The end index of the max subarray is the index x such that table $[x]$ is maximized. Knowing x we can traverse and find the i that maximizes the sum $A[i]+A[i+$ $1]+\ldots .+A[x]$.
- The problem: Given two arrays $X[1 . . n]$ and $Y[1 . . m]$, find their longest common subsequence.
- Notation and choice of subproblem: Denote by $c(i, j)$ the length of the LCS of X_{i} and Y_{j}, where X_{i} is the array consisting of the first i elements of X, and Y_{j} is the array consisting of the first j elements of Y. To solve the problem, we call $c(n, m)$
- Recursive definition of $c(i, j)$:

```
c(i,j)
```

IF $(i==0$ or $j==0)$: return 0
else
IF $X[i]==Y[j]:$ return $1+c(i-1, j-1)$
Else: return $\max \{c(i-1, j), c(i, j-1)\}$

- Correctness:
- Dynamic programming solution, top-down with memoization: We create table [0..n][0..m], where table $[i][j]$ will store the result of $c(i, j)$. We initialize all entries in the table as 0 and call cwith $D P(n, m)$.

cwithDP (i, j)

IF $(i==0$ or $j==0):$ return 0
else
IF (table $[i][j] \neq 0):$ RETURN table $[i][j]$
IF $X[i]==Y[j]$: answer $1+\operatorname{cwithDP}(i-1, j-1)$
Else: answer $=\max \{\operatorname{cwithDP}(i-1, j), \operatorname{cwithDP}(i, j-1)\}$
table $[x]=$ answer
return answer

- Dynamic programming, bottom-up:
- Analysis: $O(m \cdot n)$
- Computing full solution:

[^0]: ${ }^{1}$ An array $B[1 . . m]$ is a suffix of an array $A[1 . . n]$ if $A[n-k]=B[m-k]$ for $0 \leq k<m$

