
Dynamic Programming and Greedy: Review

Examples in lectures and labs so far

Dynamic programming:

• Playing a board game

• Rod cutting

• Knapsack

• Pharmacist

• Fibonacci

• Longest TRUE interval

• LCS (longest common subsequence) —- skip ?

• Robbing a house

• Optional: Playing a game

• Longest increasing subsequence

• Unbounded knapsack

• (Optional: Skis and skiers)

Greedy:

• Activity selection

• Guarding a museum

• A different pharmacist problem (all bottles have same cost)

• (Optional: Matching points on a line; Greedy skis and skiers)

1

Algorithms: csci2200 Laura Toma, Bowdoin College

1 Rod cutting

• The problem: Given a rod of length n and a table of prices p[i] for i = 1, 2, 3, ..., n, determine
the maximal revenue obtainable by cutting up the rod and selling the pieces.

• Notation and choice of subproblem: We denote by maxrev(x) the maximal revenue obtainable
by cutting up a rod of length x. To solve our problem we call maxrev(n).

• Recursive definition of maxrev(n):

maxrev(x)

if (x ≤ 0): return 0

For i = 1 to n: compute p[i] + maxrev(x− i) and keep track of max

RETURN this max

• Correctness: see notes.

• Dynamic programming solution, top-down with memoization:

We create a table of size [0..n], where table[i] will store the result of maxrev(i). We initialize
all entries in the table as 0. To solve the problem, we call maxrevDP (n).

maxrevDP(x)

if (x ≤ 0): return 0

IF table[x] 6= 0: RETURN table[x]

For i = 1 to n: compute p[i] + maxrevDP(x− i) and keep track of max

table[x] = max

RETURN table[x]

• Dynamic programming, bottom-up:

maxrevDP iterative(x)

create table[0..n] and initialize table[i] = 0 for all i

for (k = 1; k ≤ n; k + +)

for (i = 1; i ≤ k; i + +)

set table[k] = max{table[k], p[i] + table[k − i]}

RETURN table[n]

• Analysis: O(n2)

• Computing full solution:

2

Algorithms: csci2200 Laura Toma, Bowdoin College

2 0− 1 Knapsack

• The problem: We are given a knapsack of capacity W and a set of n items; an each item i,
with 1 ≤ i ≤ n, is worth v[i] and has weight w[i] pounds. Assume that weights w[i] and the
total weight W are integers. The goal is to fill the knapsack so that the value of all items in
the knapsack is maximized.

• Notation and choice of subproblem: Denote by optknapsack(k,w) the maximal value obtainable
when filling a knapsack of capacity w using items among items 1 through k. To solve our
problem we call optknapsack(n,W).

• Recursive definition of optknapsack(k,w):

optknapsack(k,w)

if (w ≤ 0) or (k ≤ 0) : return 0 //basecase

IF (weight[k] ≤ w): with = value[k] + optknapsack(k − 1, w − weight[k])

ELSE: with = 0

without = optknapsack(k − 1, w)

RETURN max { with, without }

• Correctness: see notes.

• Dynamic programming solution, top-down with memoization: We create a table table[1..n][1..W],
where table[i][w] will store the result of optknapsack(i, w). We initialize all entries in the table
as 0. To solve the problem, we call optknapsackDP (n,W).

optknapsackDP(k,w)

if (w ≤ 0) or (k ≤ 0):: return 0

IF (table[k][w] 6= 0): RETURN table[k][w]

IF (w[k] ≤ w): with = v[k] + optknapsackDP(k − 1, w − w[k])

ELSE: with = 0

without = optknapsackDP(k − 1, w)

table[k][w] = max { with, without }

RETURN table[k][w]

• Dynamic programming, bottom-up:

3

Algorithms: csci2200 Laura Toma, Bowdoin College

optknapsackDP iterative

create table[0..n][0..W] and initialize all entries to 0

for (k = 1; k < n; k + +)

for (w = 1;w < W ;w + +)

with = v[k] + table[k − 1][w − w[k]]

without = table[k − 1][w]

table[k][w] = max { with, without }

RETURN table[n][W]

• Analysis: O(n ·W)

• Computing full solution:

4

Algorithms: csci2200 Laura Toma, Bowdoin College

3 Pharmacist

• The problem: A pharmacist has W pills and n empty bottles. Bottle i can hold p[i] pills and
has an associated cost c[i]. Given W , p[1..n] and c[1..n], find the minimum cost for storing
the pills using the bottles.

• Notation and choice of subproblem: Denote by MinPill(i, j) the minimum cost obtainable
when storing j pills using bottles among 1 through i. To solve our problem we call minPill(n,W).

• Recursive definition of minPill(i, j):

minPill(i, j)

if (j ≤ 0): return 0 //no pills left

IF (i == 0 and j > 0): return ∞ //have pills, but no bottles, sol not possible

with = c[i] + minPill(i− 1, j − p[i])

without =minPill(i− 1, j)

RETURN min { with, without }

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[1..n][1..W],
where table[i][j] will store the result of minPill(i, j). We initialize all entries in the table as
0. To solve the problem, we call minPillDP (n,W).

minPillDP(i, j)

if (j ≤ 0): return 0 //no pills left

IF (i == 0 and j > 0): return ∞ //have pills, but no bottles, sol not possible

IF (table[i][j] 6= 0): RETURN table[i][j]

with = c[i] + minPillDP(i− 1, j − p[i])

without =minPillDP(i− 1, j)

table[i][j] = min { with, without }

RETURN table[i]j]

• Dynamic programming, bottom-up:

5

Algorithms: csci2200 Laura Toma, Bowdoin College

minPill iterative

create table[0..n][0..W] and initialize all entries to 0

for (i = 1; i < n; i + +)

for (j = 1; j < W ; j + +)

with = c[i] + table[i− 1][j − p[i]]

without = table[i− 1][j]

table[i][j] = min { with, without }

RETURN table[n][W]

• Analysis: O(n ·W)

• Computing full solution:

6

Algorithms: csci2200 Laura Toma, Bowdoin College

4 Longest True interval

• The problem: Suppose we are given an array A[1..n] of booleans. We want to find the longest
interval A[i..j] such that every element in the interval is true – in other words, A[i], A[i +
1], .., A[j] are all true.

• Notation and choice of subproblem: Denote by G(x) to be the length of the longest suffix1

of A[1..x] that is all true. In other words, G(x) is the largest integer l such that A[x − l +
1], A[x− l + 2], .., A[x] are all true, or 0 if A[x] is false.

• Recursive definition of G(x):

G(x)

IF (x == 1): return A[1]

else

IF A[x] == False: return 0 else return 1 + G(x− 1)

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[0..n], where
table[i] will store G(i). We initialize all entries in the table as 0. To solve the problem, we
call GwithDP (0), GwithDP (1), GwithDP (2), ... to fill the table and then return the max
element in table[1..n].

GwithDP(x)

IF (x == 1): return A[1]

else

IF (table[x] 6= 0): RETURN table[x]

IF A[x] == False: answer= 0 else answer= 1 + GwithDP (x− 1)

table[x] = answer

return answer

• Dynamic programming, bottom-up:

• Analysis: O(n)

• Computing full solution:

1An array B[1..m] is a suffix of an array A[1..n] if A[n− k] = B[m− k] for 0 ≤ k < m

7

Algorithms: csci2200 Laura Toma, Bowdoin College

5 Maximum partial sum (or maximum subarray)

• The problem: We are given an array A[1..n]. We want to find the interval i..j such that the
sum of the elements in the interval A[i]+A[i+1]++A[j] is maximized. We call this value
the maximum subarray sum (or maximum partial sum) of A. We want to find it, along with
the indices i, j that achieve it.

• Notation and choice of subproblem: Denote by G(x) the maximum subarray sum that ends
at x. So basically its the largest of {A[x], A[x− 1] + A[x], A[x− 2] + A[x− 1] + A[x], ...} and
so on.

Claim: The max subarray sum of A is the largest G(x) for x = 1...n.

• Correctness: The maximum subarray sum in A must end at some index j. Then G(j) will
store that maximum subarray sum.

• Recursive definition of G(x):

G(x)

IF (x == 1): return A[1]

else: return max{G(x− 1) + A[x], A[x]}

//if G(x) includes elements past x, those must be G(x-1)

• Dynamic programming solution, top-down with memoization:

• Dynamic programming, bottom-up:

maxsubarray iterative()

create table[0..n] and initialize table[i] = 0 for all i

for x = 1;x ≤ n;x + +

table[x] = max {A[x] + table[x− 1], A[x]}

RETURN max entry in table[1..n]

• Analysis: O(n).

• Computing full solution: The end index of the max subarray is the index x such that table[x]
is maximized. Knowing x we can traverse and find the i that maximizes the sum A[i] +A[i+
1] + + A[x].

8

Algorithms: csci2200 Laura Toma, Bowdoin College

6 LCS

• The problem: Given two arrays X[1..n] and Y [1..m], find their longest common subsequence.

• Notation and choice of subproblem: Denote by c(i, j) the length of the LCS of Xi and Yj ,
where Xi is the array consisting of the first i elements of X, and Yj is the array consisting of
the first j elements of Y . To solve the problem, we call c(n,m)

• Recursive definition of c(i, j):

c(i, j)

IF (i == 0 or j == 0): return 0

else

IF X[i] == Y [j]: return 1 + c(i− 1, j − 1)

Else: return max{c(i− 1, j), c(i, j − 1)}

• Correctness:

• Dynamic programming solution, top-down with memoization: We create table[0..n][0..m],
where table[i][j] will store the result of c(i, j). We initialize all entries in the table as 0 and
call cwithDP (n,m).

cwithDP(i, j)

IF (i == 0 or j == 0): return 0

else

IF (table[i][j] 6= 0): RETURN table[i][j]

IF X[i] == Y [j]: answer 1 + cwithDP(i− 1, j − 1)

Else: answer= max{cwithDP(i− 1, j), cwithDP(i, j − 1)}
table[x] = answer

return answer

• Dynamic programming, bottom-up:

• Analysis: O(m · n)

• Computing full solution:

9

