
Longest Common Subsequence (LCS)

(CLRS 15.4)

Laura Toma, csci2200, Bowdoin College

Biological applications work with DNA sequences. A strand of DNA consists of a string of molecules
which are one of four possible bases: adenine (A), guanine (G), cytosine (C) and thymine (T). Thus
DNA sequences can be expressed as arrays or strings over four symbols, A,C,G, T . Biologists want
to compare how “close” are two DNA strands, and one way to model closeness is to compute the
longest common subsequence of two DNA strands.

The LCS problem: Suppose we have two sequences (arrays) X[1..n] and Y [1..m], where each
of X[i], Y [i] are one of the four bases A,C,G, T .

• We say that another sequence Z[1..k] is a subsequence of X if there exists a strictly increasing
sequence of indices i1, i2, i3, ..., ik such that we have X[i1] = Z[1], X[i2] = Z[2], ..., X[ik] =
Z[k].

• We say that Z is a common subsequence (of X,Y ) if Z is a subsequence of both X and Y .

Given two sequences X and Y of size n and m respectively, come up with an algorithm that finds
their longest common subsequence (LCS).

Example: Let X = [A,B,C,B,D,A,B], Y = [B,D,C,A,B,A].

The questions below will guide you towards a solution. Before you turn to the next page, stop
and try to think how you might approach this problem with dynamic programming.

1. List some common subsequences of length 2 and 3. Can you find a common subsequence of
length 4? 5?

1



2. Sketch a brute-force algorithm for finding LCS(X,Y ). For example you could enumerate all
possibilities—-How many possibilities are there?

You don’t need to write this in detail, just sketch the idea and find it’s running time.

3. Towards a recursive formulation:

More notation: For any sequence X[1..n] let Xi denote the sequence consisting of the first
i elements of X, called the i-prefix: Xi = X[1..i].

Let Z[1..k] be the LCS of X,Y .

• Case 1: If X[n] == Y [m]: Is the following True or False?

The last element of Z must be equal to the last element of X and Y : Z[k] = X[n] = Y [m]

Why?

What can you say about Zk−1? Express it recursively in terms of Xn−1 and Ym−1:

Zk−1 = LCS(?, ?)

• Case 2 (a): If X[n] 6= Y [m] and Z[k] 6= X[n]: Express Z recursively.

Z = LCS(?, ?)

• Case 2 (b): If X[n] 6= Y [m] and Z[k] 6= Y [m]: Express Z recursively.

Z = LCS(?, ?)

4. We are now ready to write the recursive algorithm for LCS. For simplicity, we’ll start by
computing only the length of the LCS of X,Y . Then we’ll extend the solution to compute
not only the length, but the actual LCS.

2



Notation: Denote c(i,j) the length of the LCS of Xi and Yj.

With this notation, we want to compute c(n,m).

Start by writing the base case:

c(i, 0) =?

c(0, j) =?

5. If X[n] == Y [m]: Express c(i, j) recursively.

c(i, j) =

6. If X[n] 6= Y [m]: Express c(i, j) recursively.

c(i, j) =

7. Write pseudo-code for a recursive algorithm that computes the length of LCS(X,Y) (that is,
c(i, j) as per notation above).

8. Analyze the running time of your algorithm (assume it does NOT use dynamic programming)
and argue that it is exponential.

3



9. Describe how you can improve the running time of your algorithm using dynamic programming.
Analyze the new running time.

10. Consider the following example:

X = [A,B,C,B,D,A,B], Y = [B,D,C,A,B,A]

Draw the table and show how it’s filled when calling your dynamic programming function to
compute c(7, 6). You are encouraged to write Python code to help you with this problem.

11. How would you extend your algorithm above to compute the LCS not just the length?

4


