Welcome to Algorithms!

Week 1: introduction

1 Overview

e Class is about designing and analyzing algorithms. What does that mean?

— Algorithm: A well-defined procedure that takes an input and computes some output.

— Design of algorithms: The process of coming up with algorithms. This is both an art
and a science. There are no recipes, but there exist some general techniques and we’ll
see some of them.

— Analysis of algorithms: Abstract/mathematical comparison of algorithms without actually
implementing them. Think of analysis as a measure of the quality of your algorithm and
you’ll use it to justify design decisions when you write programs.

The fundamental problems are searching and sorting, and we’ll start by reviewing them.
e Searching: linear search, binary search

e Sorting: bubble sort, selection sort, insertion sort

e Basic analysis: best case and worst case running times analysis using O() from Data Structures

2 Basic searching

For both searching and sorting the input is an array of arbitrary size. We’ll denote the size of the
input array by n.

The search problem: Given an input array A[0...n — 1] and a target element ¢, find if ¢ occurs
in A (yes/no answer).

e Variations: find index where it occurs; find all occurences; count number of occurences.

There are two basic ways to search: the so-called linear search (why is it called linear?), and
binary search. Both of these should be familiar from Data Structures. If they are not, go back and
check your notes or search on www.

3 Basic sorting

The sorting problem: Given an input array A of n elements, permute the elements such that the
sequence is now sorted, i.e. A[0] < A[1] < A[2] < ... < A[n—1].

Note that the way sorting is defined above, the input array is permuted so that it’s sorted.
This is called in-place sorting; we’ll come back to this in a few lectures. For now, just make
a mental note that the other possibiity is for the sorting algorithm to create a new array
which is the sorted version of the input array. Why does this matter? Creating a new array
uses space, and when the array is xxxl, space matters. In-placeness is a desirable feature of
a sorting algorihm, and one we need to be aware of.

We’'ll warm up with the following algorithms: bubble sort, selection sort, insertion sort

You may have seen these, or some of these, in Data Structures. If not, no worries, you get to
see them now!

Go through each algorithm and try to answer the questions. They are meant to help you
understand the algorithms, as well as get used to think with an “algorithms hat” on.

Note: All in-lecture questions are at collaboration-level 0, that is, no restrictions. Feel free
to work with peers and search the www if that helps you learn better.

3.1 Bubblesort

BUBBLE-SORT(A)
1 Fork=1ton-1

2 / do a bubble pass

3 Fori =0ton—2

4 if A[i] > A[i + 1]: swap
Study questions:

1. Run the algorithm on A = [3,1,5,7,4,6,2], and show the array after every iteration.

2. What can you say about the last element in A after one bubble pass? Make a statement and
try to argue why it’s true. (Hint: there is one element that is always guaranteed to be in the
right place after one pass...which one? why?)

3. What happens after two bubble passes? Use the example above to guide you. (Hint: there
are two elements that are guaranteed to be in the right places...which ones?)

4. Using this insight, argue that after n — 1 bubble passes the input is sorted. This is saying

that the algorithm is correct.

5. Because after n — 1 passes the input is guaranteed to be sorted (see above), this tells us that
n — 1 bubble passes are sufficient to sort. Now we ask the following question: Are n — 1
passes necessary? In other words, is there an array of n elements that is not sorted after
n — 2 bubble passes and therefore needs the last (n — 1)-th pass to be sorted? If the answer
is no, then we could write a better algorithm that still sorts correctly but does fewer passes.

Come up with an array A that needs precisely n — 1 bubble passes to be sorted.

3.2 Selection sort

The idea of selection sort is to select the smallest element, swap it with the first element, and repeat
on the remaining elements. We start by writing it using high-level statements, such as the one in
line 2 below . This is something we often do when we try to come up with algorithms: we sketch
the algorithm in terms of high-level blocks until we get the overall idea right, and we fill in the
detail of each block later. It helps to keep the focus on the big picture before taking care of the
details.

SELECTION-SORT(A)

1 Fori=0to (7)

2 k = the index of the smallest element among A[i], A[i 4+ 1], ..., A[n — 1]
3 swap Ali] with A[k]

Study questions:
1. Show how this works on the array A = (3,1,5,7,4,6,2).

2. Fill in the omitted detail in the “for” loop (ie what should the ? be in line 1 of the algorithm?
ie, how many iterations are necessary?).

3. Now think about how you would implement line 2 in the algorithm. Namely, write an
algorithm FIND_SMALLEST(A, i, n) which takes as input an array A of n elements, and an
index 4 such that 0 < i < n, and finds the index of the smallest element among A[i], A[i +
1], ..., Aln — 1]

3.3 Insertion sort

Insertion sort works similarly with sorting a deck of cards: Initially all cards are on the table and
your hand is empty. You take one card at a time from the table and insert it in the hand in the
right place, until the pile of cards on the table is finished. Along the way you make sure to keep
the cards in your hand sorted.

The algorithm is easy to understand, but a little more complicated to write if we insist to do
it by permuting A, that is, without allocating a new array to perform the insertion. It starts with
one card in hand, and n — 1 on the table. It has two nested loops: the first loop runs precisely
n — 1 times, and every time it runs it looks at the next element A[k]. The inner loop performs
the insert of A[k] into A[0...k — 1]. This is done by finding the correct place where A[k] fits in

Al0],

..ey A[k — 1], placing it there and copying all elements to its right (ie larger than A[k]) one

space over to the right in order to make space for inserting A[k]. In fact the shift to the right can
be done while searching for the right place for A[k]. The algorithm is described below.

INSERTION-SORT(A)
1 Fork=1ton-—1

2 //invariant: A[0] < A[1] < A[2] < ... A[k —1]
3 key = A[k]

4 i =k—1

5 while i > 0 and A[i] > key

6 Ali + 1] = Ali

7 t=1—1

8 Ali + 1] = key

Study questions:

1.

Show how this works on A = (3,1,5,7,4,6,2). The goal of this exercise is to go through the
algorithm and understand how it work.

. Note the invariant in line 2. An invariant is something that we claim to be true. In this

case, the invariant is inside the loop so we claim it is true at at every iteration of the loop;
sometimes it is refered to as a loop invariant. What does this invariant state for the first
iteration of the loop(k = 1)7 Spell it out. Is it true?

. What part of the array A corresponds to the “hand”?

. Describe in a short sentence what the inner loop does.

. For a given value of k, how many times does the inner while loop run, in the best case?
. Same question as above, but the worst-case.

. Assume n = 7 and give a best-case and worst-case input for insertion-sort.

. Note: So the invariant is trivially true for k = 1. To prove that the invariant is true for every

k one would use the technique called induction. If you have seen induction, try to sketch the
proof. If not, no worries, move on.

Once you understand it, you’ll probably agree that this little piece of code is quite elegant! It
sorts A while using only three additional variables (i, k, key). Does that matter? Sometimes. If A
has trillions of elements, being stingy with space is a good idea.

4 Analysis review

We’ll spend all next week to formally define analysis, but for now we want to review the concepts
from Data Structures.

e The goal of analysis is to model theoretically the performance of an algorithm (without
implementing it)

e By default performance means running time; but could also mean memory, bandwidth, disk
accesses, etc.

e The running time of an algorithm is roughly the number of instructions it executes x the
time taken by an instruction (assuming all instructions are equal, more on that later). The
time taken to execute an instruction is the same on a given platform, and factoring it in will
not help distinguish between algorithms. So we ignore it and consider that running time =
nb. of instructions

e Inputs of different sizes will have different running times, thus the running time is a function
of the input size n, and is usually denoted by T'(n).

e Consider various inputs of a given size. For e.g. linear search can run precisely one comparison
and find the target as the first element in the array. Or, it can run through the entire array
without finding the target. Thus T'(n) depends on the particular input of size n.

e Consider all possible inputs of a size n. The best case runnig time is the shortest possible
running time 7'(n) on an input of size n. For e.g. linear search can run precisely one
comparison and find the target as the first element in the array

e Similarly, the worst case runnig time is the largest possible running time 7°(n) on an input
of size n. For e.g. the worst case of linear search is running through the whole array and not
finding the target.

e In Data Structures you expressed the running time using the big-oh notation. Basically this
means ignoring constants and looking for the dominant term. For e.g. O(n),O(n?), and so
on. We'll introduce this formally next week.

e Example: The best case of linear search is O(1) (i.e. a constant), and corresponds to when
the target is the first element in the array.

e Example: The worst case of linear search is O(n) and corresponds to an array of size n and
a target that does not occur in the array.

Study questions:

1. What is the best case and worst case running time of Bubblesort, as written above? What
sort of input arrays trigger these cases?

. What is the best case and worst case running time of Selection sort? What sort of input
arrays trigger these cases?

. What is the best case and worst case running time of Insertion sort? What sort of input
arrays trigger these cases?

