
Week 7: Lab

Collaboration level 0 (no restrictions). Open notes.

Overview: This week’s lecture covered two examples of divide-and-conquer algorithms that are
widely used in practice: large integer multiplication, and matrix multiplication. Today you’ll work
on a new problem—the maximum sub-array problem, and you’ll come up with a divide-and-conquer
solution for this problem that runs in O(n lg n) time.

The maximum sub-array (MPS) problem: Given an array A of n integers, find values of i
and j with 0 ≤ i ≤ j < n such that the sum

A[i] + A[i + 1] + ... + A[j] =
j∑

k=i

A[k]

is maximized. Sometimes this is called the maximum partial sum problem.

Example: Consider the array A = [4,−5, 6, 7, 8,−10, 5]. What is the MPS?
Answer: the solution to MPS is i = 2 and j = 4 (6 + 7 + 8 = 21).

Note that if all values are positive, then the problem is trivial (i = 0 and j = n− 1). The problem
is non-trivial only if there are negative numbers.

Applications. This problem might be encountered in financial analysis, and one textbook offers
a possible scenario. Basically, think of the values in the array as relative gain/loss of a stock (wrt
to some fixed initial value). Finding the maximum sub-array would (retro-actively) tell you when
you should have purchased and sold a stock in order to maximize gain. Refer to the textbook for
full explanation, or just use your imagination. This problem is also asked in interviews. Today
we’ll come up with an O(n lg n) solution via divide-and-conquer. 1.

1In a couple of weeks we’ll come back and give an O(n) solution for this problem using dynamic programming

1

1. Consider the following array:

A = [13,−3,−25, 20,−3,−16,−23, 18, 20,−7, 12,−5,−22, 15,−4, 7]

Find the MPS and the corresponding i =?, j =?

2. One thought that will come to mind is whether the MPS can include negative numbers. A
negative number will afterall decrese the MPS, so it feels that they should be skipped. Or do
they?

Examine this issue and give an argument one way or the other.

2

3. Describe a straightfoward algorithm to find the MPS of an array A and analyze its running
time. We’ll refer to this as the simple algorithm, the straightforward algorithm, or the brute-
force.

3

4. As always, the question is: Can we do better? For e.g., can we solve MPS in O(n lg n) time?
As it turns out, a neat O(n lg n) algorithm for MPS is possible via divide-and-conquer. The
subsequent questions guide you towards the solution.

Assume that you know what the MPS of A is. Now consider the index in the middle of the
array. List all the posibilities that can happen based on how the MPS i and j indices are
located compared to the middle index k = bn/2c.
Case 1:

Case 2:

Case 3:

5. You can use this insight to set up the correctness grounds for recursion. Fill in the blanks:

Claim: The MPS of array A[0.., n-1] is either (a) the MPS of ..; or
(b) the MPS of or (c) ...

4

6. To find the MPS we need to find the two indices i and j that mark its start and end.

Now consider the one-dimensional version of this problem, Namely, consider that the left
index of the MPS l is given and you want to find the index j (l ≤ j < n) such that
A[l] + A[l + 1] + ... + A[j] is maximized. (This would be the “Find the MPS that starts at a
given index” problem).

How fast can you find index j in this case? Remember that l is given.

7. Similarly, assume that the right index r of the MPS is given, and you want to find the index
i such that A[i] + A[i + 1] + ... + A[r] is maximized. (This would be the “Find the MPS that
ends at a given index” problem).

How would you find index j and how fast? Brief answer ok.

8. So if you knew the start or end of the MPS, you could find the other side in O(n) time.
Right? What if: an oracle told you that a certain index k is part of the MPS; would that
help? how would you use that to find the MPS in linear time?

5

9. Describe an O(n log n) divide-and-conquer algorithm for solving MPS problem.

6

Additional problems

1. You’re interviewing for your dream job at an echological ethical tech company with healthy
snacks. You already passed 25 stages of interviews, and your final interviewer asks you to
design a binary search tree data structure that performs INSERT operations in O(

√
lg n) time

using a comparison-based algorithms. Design such a structure, or prove that it is impossible.

[We expect: If possible: An English description of the algorithm and a running time analysis.
If impossible: A formal proof that this is impossible.]

2. Below is the text of a problem I saw at a job fair.

7

