
Graph Traversal: Breadth-First Search and Depth-First Search
Module 5: Graphs

Overview

We describe the basic graph traversal algorithms, breadth-first search and depth-first search, and
explore their applications.

Graph traversal

• Consider a graph, directed or undirected.

• The most basic graph problem is traversing the graph. There are two simple ways of traversing
all vertices/edges in a graph in a systematic way: BFS and DFS

• Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discovered,
to completely-discovered:

– undiscovered: initially (WHITE)

– discovered: after it’s encountered, but before it’s completely explored (GRAY)

– completely explored: the vertex after we visited all its incident edges (BLACK)

• Graph traversal starts with a single vertex and evaluate its outgoing edges:

– If an edge goes to an undiscoverd vertex, we mark it as discovered and add it to the list
of discovered vertices.

– If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)

– If an edge goes to an already discovered vertex, we ignore it (it’s already on the list).

• Depending on how we store the list of discovered vertices we get BFS or DFS:

– queue: explore oldest vertex first. The exploration propagates in layers form the starting
vertex.

– stack: explore newest vertex first. The exploration goes along a path, and backs up only
when new unexplored vertices are not available.

• Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once
when exploring each endpoint) ⇒ O(|V |+ |E|). More on this later.

1

Algorithms: csci2200 Laura Toma, Bowdoin College

Breadth-first search (BFS)

• BFS uses a queue to hold the gray vertices (which are the vertices we have seen but are still
not done with).

• BFS computes the following additional information for each vertex v: it’s parent, and its
distance from the source

– parent[v]: this is the node from which vertex v is colored gray, i.e. the node that
discovered v first

– d[v]: the length of the path from s to v. Initially d[s] = 0.

BFS(vertex s)

color[s] = “gray”

d[s] = 0

Enqueue(Q, s)

WHILE Q not empty DO

u= Dequeue(Q)

FOR each v ∈ adj[u] DO

IF color[v] = “white” THEN

color[v] = gray

d[v] = d[u] + 1

parent[v] = u //(u,v) is a tree-edge in thw DFS-tree

Enqueue(Q, v)

//ELSE: v is not white => (u,v) is non-tree edge

//we are done exploring vertex v

color[u] = “black”

• Example (for directed graph):

• Note that you can run BFS from an arbitrary vertex in the graph. BFS(s) will reach all
vertices that are reachable from (are connected to) source vertex s.

• If graph is not connected: after BFS(s), some vertices in the graph will still be WHITE. To
explore the whole graph, we start the traversal at all vertices until the entire graph is explored.

2

Algorithms: csci2200 Laura Toma, Bowdoin College

BFS(graph G)

FOR each vertex u ∈ V DO

IF color[u] = white THEN BFS(u)

Properties of BFS

• Lemma: On a directed graph, BFS(s) visits all vertices reachable from s. On an undirected
graph, BFS(s) visits all vertices in the connected component (CC) of s.

Proof sketch: Assume by contradiction that there is a vertex v in CC(u) that is not reached by
BFS(u). Since u, v are in same CC, there must exist a path v0 = u, v1, v2, ..., vk, v connecting
u to v. Let vi be the last vertex on this path that is reached by BFS(u) (vi could be
u). When exploring vi, BFS must have explored edge (vi, vi+1),..., leading eventually to v.
Contradiction.

• Lemma: BFS(s) runs in O(|Vc| + |Ec|), where Vc, Ec are the number of vertices and edges
in CC(s). When run on the entire graph, BFS(G) runs in O(|V |+ |E|) time. Put differently,
BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it is not explored again. It
traverses each edge (u, v) once (twice, on an undirected graph). Overall, this is O(|V |+ |E|).

• Lemma: Let x be a vertex reached in BFS(s). Its distance d[x] represents the the shortest
path from s to x in G.

Proof sketch: All vertices v which are one edge away from s are discovered when exploring
s and are set with d[v] = 1, which is correct. Now consider a vertex v whose shortest path
from s is two edges, and let u be the intermediate vertex on the shortest path from s to v.
Since there is an edge (s, u), vertex u will be discovered from s and set with d[u] = 1, and
then when u is explored, it discovers vertex v and sets d[v] = 2.

In general, we use induction on the length of the shortest path. Assume inductively that any
vertex u whose shortest path consists of k − 1 edges is set correctly with d[u] = k − 1. Let
v be a vertex whose shortest path from s consists of k edges: < s, v1, v2, ..., vk−1, vk = v >.
When vertex vk−1 is explored, it will discover vk and set d[v] = d[vk−1] + 1. Note that the
shortest path from s to vk−1 consists of k − 1 edges, and by induction hypothesis we have
that d[vk−1] = k − 1. Then it follows that d[v] = (k − 1) + 1 = k.

• Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree,
called the BFS-tree.

• During BFS(v) each edge in G is classified as:

– tree edge: an edge leading to an unmarked vertex

– non-tree edge: an edge leading to a marked vertex.

3

Algorithms: csci2200 Laura Toma, Bowdoin College

• Lemma: For undirected graphs, for any non-tree edge (x, y) in BFS(v), the level of x and y
differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that
differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already
marked (because otherwise (x, y) would be a tree edge). Furthermore y has to be in the
queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed
x was first. So y has to be in the queue, and we have |d(y)− d(x)| ≤ 1 by above observation.

Depth-first search (DFS)

• DFS uses a stack instead of queue to hold discovered vertices

• DFS computes the following additional information for each vertex:

– Start time d[u]: time when a vertex is first visited.

– Finish time f[u]: time when all adjacent vertices of u have been visited.

• We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead
of a QUEUE; or,

• The standard implementation is recursive

DFS(vertex u)

color[u] = gray

d[u] = time

time = time + 1

FOR each v ∈ adj[u] DO

IF color[v] = white THEN

parent[v] = u

DFS(v)

color[u] = black

f [u] = time

time = time + 1

• Example:

4

Algorithms: csci2200 Laura Toma, Bowdoin College

1/

2/ 6/ 5/

4/3/1/3/ 4/

5/

4/3/

2/

1/

2/

3/1/

2/

1/

2/

1/

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

a

b c e g

fd

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

a) b)

c) d)

e)
f)

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

1/

2/

3/ 4/

5/6/7

1/

2/

3/ 4/

6/7

1/

2/

3/

6/7

1/

6/7

5/8

5/8

4/9

2/11 5/8

4/93/10

1/

2/ 6/7 5/8

4/93/10

6/7

1/ 3/10 4/9

5/82/11

g) h)

i) j)

k) l)

DFS Properties

• On a directed graph, DFS(u) reaches all vertices reachable from u. On an undirected graph,
DFS(u) visits all vertices in CC(u).

• Analysis: DFS(s) runs in O(|Vc|+ |Ec|), where Vc, Ec are the number of vertices and edges in
CC(s) (reachable from s, for directed graphs). When run on the entire graph, DFS(G) runs
in O(|V |+ |E|) time. Put differently, DFS runs in linear time in the size of the graph.

• The edges {(v, parent[v])} forms a tree, the DFS-tree

• Nesting of descendants: If u is a descendent of v in the DFS-tree then d[v] < d[u] < f [u] <
f [v].

It can be shown that this is true the other way around as well: If d[v] < d[u] < f [u] < f [v]
then u is descendent of v in DFS-tree.

5

