
Dynamic programming: Weighted interval scheduling

Weighted interval scheduling is another classic DP problem. It is the more general version of a
problem we’ll see next time (activity selection, CLRS 16), and knowing this more general version
is helpful. It is not in the textbook.

The problem: You are given a set of jobs: each job has a start time, an end time, and has
a certain value or weight. The weight of a job measures its importance—higher weight if more
important (if all jobs were “equal” they would have all equal weights). Furthermore, imagine we
have a single classroom where we can schedule these jobs. We want to pick a set of jobs that we
can assign to the classroom such that:

• First, this set of jobs has to be compatible (i.e. non-overlapping), so that they can be scheduled
in the same classroom. Overlapping at an endpoint is considered acceptable.

• Second, we want to weigh in the weights: Of all possible choices, we want to find a subset of
jobs (to schedule in the classroom) of maximum total weight.

Here is the more abstract version of this problem: Given a set of intervals I1, I2, ..., In with start
times s[1..n], finish times f [1..n], and values v[1..n], find a subset of compatible (non-overlapping)
intervals of maximal total value:

find S ⊆ I such that S compatible and
∑
i∈S

vi is maximized

• Optimal substructure: How would you argue that the problem has optimal sub-structure?

Simplify: As always, for simplicity, we’ll start by computing only the maximal value of
the subset. Once we know how to do this, we’ll extend the solution to compute not only the
value, but the actual subset of jobs that achieve this value.

1

Algorithms: csci2200 Laura Toma, Bowdoin College

• Recursive formulation: IN or OUT. Consider a subset of activities S that represents an
optimal solution. An interval Ik is either in S, or not. When we come to deciding whether an
activity is part of the solution or not, we have precisely two choices. Now let’s try to come
up with a recursive formulation that uses this insight.

• Notation I: The trick is coming up with a recursive formulation whose parameter is an
integer, not a set. We’ll use the following notation:

Let us assume that the jobs are ordered by non-decreasing finish time fi:

f1 ≤ f2 ≤ f3.... ≤ fn

Define p(j) to be the job with the largest index less than j which is compatible with job j. In
other words, the largest index k such that fk ≤ sj . If no such job exists then define p(j) = 0.

Note that none of the intervals I1, I2, ...Ip(j) intersects with Ij .

2

Algorithms: csci2200 Laura Toma, Bowdoin College

Draw a set of 8 activities, number them so that they are orderd by finish time, and show p(j)
for all activities.

• Show how to compute all p(i), i = 1..n in O(n2) time; what about in O(n lg n) time? Re-
member that we assume the activitoes are numbered in order of their finish times; you may
also assume that you have a list of the activities sorted by their start times.

3

Algorithms: csci2200 Laura Toma, Bowdoin College

• Notation II: Let S(i) denote the maximum weight of any set of compatible jobs, all of
which finish by fi.

We want to compute S(n).

Assume we have computed p(i), i = 1..n.

Give the recursive formulation for S(i), including the basecase:

• Write pseudocode to compute S(i).

4

Algorithms: csci2200 Laura Toma, Bowdoin College

• Analysis: Let T (n) be the worst-case running time of computing S(n). Write a recurrence
relation for T (n).

• Argue that T (n) is exponential.

• Describe a dynamic programming solution and analyze its running time.

5

