
Dynamic Programming: 0-1 Knapsack

• The 0 − 1 knapsack problem: Given n items, with item i being worth v[i] and having
weight w[i] pounds, fill a knapsack of capacity W pounds with maximal value. Assume that
the weights and values of the n items are given in two arrays; furthermore, assume that
weights wi and the total weight W are integers.

• One very tempting idea is the following: Take the item with the largest value-per-pound,
then the second one, and so on, while there is space left in the knapsack. This is called a
greedy algorithm; we’ll talk more about greedy algorithms and see some examples where they
do work, next week. Here is a counter-example showing that the strategy above does not
work for the knapsack problem:

20

30

= $220

Optimal solution
for knapsack of
size 50

10
20

30

10

20
= $160$60

$100
$120

order

Items in value
per pound

Greedy solution
for knapsack of
size 50

Note: One can imagine a version of the problem called the fractional-knapsack problem
in which we can take 2

3 of $120 object and get $240 solution.Does the counter-example above
still work?

• Optimal substructure: How would you argue that the problem has optimal sub-structure?

• Simplify: As usual, we’ll focus on finding out the optimal value that we can place in the
knapsck; At the end we’ll show that we can augment the solution to find the actual set of
items in addition.

1

Algorithms: csci2200 Laura Toma, Bowdoin College

• Recursive formulation: The hardest part is coming up with the recursive formulation. We
note that as we put an item in the knapsack, the set of remaining items to choose from is
smaller, and the weight of the knapsack is smaller. This suggests that there are two arguments
to the recursive problem: the set of items to chose from, and the available capacity of the
knapsack.

• Notation: Let us denote by optknapsack(k,w) the maximal value obtainable when filling a
knapsack of capacity w using items among items 1 through k.

• To solve our problem we’ll call optknapsack(n,W).

• The overall strategy: The idea is to consider each item, one at a time. When we reach item
k, we have two choices: either it’s part of the optimal solution, or not. We need to compute
both options, and chose the best one.

optknapsack(k,w)

//basecase

if (w ≤ 0): return 0

if (k ≤ 0): return 0

//choice 1: take item k in the backpack

IF (weight[k] ≤ w): with = value[k] + optknapsack(k − 1, w − weight[k])

ELSE: with = 0

//choice 2: do not take item k in the backpack

without = optknapsack(k − 1, w)

//the optimal solution is the best of the two

RETURN max { with, without }

• Running time analysis:

Let T (n,W) be the running time of optknapsack(n,W). We have:

T (n,W) = T (n− 1,W) + T (n− 1,W − w[n]) + Θ(1)

The worst case is when w[i] = 1 for all 1 ≤ i ≤ n.

T (n,W) = T (n− 1,W) + T (n− 1,W − 1) + Θ(1)

2

Algorithms: csci2200 Laura Toma, Bowdoin College

Since T (n− 1,W) > T (n− 1,W − 1) we get that

T (n,W) > T2(n− 1,W − 1)

The recursion depth is min(n,W) steps, and at every step, the time doubles. Therefore
T (n,W) = Ω(2min(n,W)). This is exponential.

• Why exponential? How many different sub-problems are there? Answer: Each call to
optknapsack() has a value for k and a value for w. There are n values for k and W values for
w. In total n ·W different sub-problems.

• Overlapping calls: Sketch the recursion tree for n = 5 and w[1] = w[2] = w[3] = w[4] = 1

Dynamic programming: memo-ized recursive solution

• Idea: we’ll use a table to store solutions to subproblems. Effectively, the table will prevent a
subproblem optknapsack(k,w) to be computed more than once. Note that since a subproblem
is of the form optknapsack(k,w), i.e. has two arguments, the table must be two dimensional.

• The table: We create a table T of size [1..n][1..W]. Entry T [i][w] will store the result of
optknapsack(i, w).

• Initialize: First we initialize all entries in the table as 0 (in this problem we are looking for
max values when all item values are positive, so 0 as initial value is safe).

• We modify the algorithm to check this table before launching into computing the solution.

3

Algorithms: csci2200 Laura Toma, Bowdoin College

optknapsackDP(k,w)

//basecase

if (w ≤ 0): return 0

if (k ≤ 0): return 0

//if solution already computed, return it

IF (table[k][w] 6= 0): RETURN table[k][w]

//choice 1: take item k in the backpack (if possible)

IF (w[k] ≤ w): with = v[k] + optknapsackDP(k − 1, w − w[k])

ELSE: with = 0

//choice 2: do not take item k in the backpack

without = optknapsackDP(k − 1, w)

//store solution in the table

table[k][w] = max { with, without }

RETURN table[k][w]

• Analysis: Ignoring the recursion, each subproblem is computed in O(1) time. This will run
in O(n ·W) time as we fill each entry in the table at most once, and there are nW spaces in
the table.

Dynamic programming: iterative solution

It is possible to eliminate recursion by filling the table in the order in which recursion fills it.

Question: In what order is the table filling up? Where are the base-cases in the table?
Answer: Table is filling up left to right and top-down.

4

Algorithms: csci2200 Laura Toma, Bowdoin College

optknapsackDP iterative

create table[0..n][0..W] and initialize all entries to 0

for (k = 1; k < n; k + +)

for (w = 1;w < W ;w + +)

with = v[k] + table[k-1][w-w[k]]

without = table[k-1][w]

table[k][w] = max { with, without }

RETURN table[n][W]

Analysis: O(n ·W)

From finding the optimal cost to finding the set of items

Describe how to extend this solution in order to compute the set of items in the backpack (corre-
sponding to the optimal value).

5

