Class work: Asymptotic notation

1. (R-1.2) Algorithm A uses $10 n \lg n$ operations, while algorithm B uses n^{2} operations. Determine the value n_{0} such that A is better than B for $n \geq n_{0}$.
2. (R-1.7) Let $f(n)=\lg n$ and assume that we have an algorithm whose running time is $f(n)$ microseconds. Determine the largest size of a problem that can be solved by the algorithm in: (a) 1 second; (b) 1 hour; (c) 1 month; (d) 1 century.
Same problem for $f(n)=\sqrt{n}$ and $f(n)=n$.
3. (R-1.6) Order the following expressions from fastest to slowest:

$$
\sqrt{2}^{\lg n}, n^{2},\left(\frac{3}{2}\right)^{n}, n^{3}, \lg n^{2}, \lg ^{2} n, 2^{n}, \lg \lg n, n \lg n
$$

