Divide-and-conquer

(CLRS 4.2)
Laura Toma, csci2200, Bowdoin College

D\&C s a powerful technique for solving problems:
Input: Problem P
To Solve P:

1. Divide P into smaller problems P_{1}, P_{2}
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to P_{1}, P_{2} into solution for P .

Matrix Multiplication

Let X and Y be two $n \times n$ matrices
$X=\left\{\begin{array}{llll}x_{11} & x_{12} & \cdots & x_{1 n} \\ x_{21} & x_{22} & \cdots & x_{1 n} \\ x_{31} & x_{32} & \cdots & x_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n n}\end{array}\right\}$
We want to compute $Z=X \cdot Y$, where $z_{i j}=\sum_{k=1}^{n} X_{i k} \cdot Y_{k j}$
Problem: Given two matrices of size n by n, come up with an algorithm to compute the product.

- The straightfoward method uses $\Rightarrow n^{2} \cdot n=\Theta\left(n^{3}\right)$ operations
- Can we do better? That is, is it possible to multiply two matrices faster than $\Theta\left(n^{3}\right)$?
- This was an open problem for a long time... until Strassen came up with an algorithm in 1969. The idea is to use divide-and-conquer.

Matrix multiplication with divide-and-conquer

- Let's imagine that n is a power of two. We can view each matrix as consisting of $2 \mathrm{x} 2=4$ $n / 2$-by- $n / 2$ matrices.

$$
X=\left\{\begin{array}{cc}
A & B \\
C & D
\end{array}\right\}, Y=\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}
$$

- Then we see that their product $X \cdot Y$ can be written as:

$$
\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{ll}
(A \cdot E+B \cdot G) & (A \cdot F+B \cdot H) \\
(C \cdot E+D \cdot G) & (C \cdot F+D \cdot H)
\end{array}\right\}
$$

- The above naturally leads to divide-and-conquer solution:
- Divide X and Y into 8 sub-matrices A, B, C, D, E, F, G, H.
- Compute $8 n / 2$-by- $n / 2$ matrix multiplications recursively.
- Combine results (by doing 4 matrix additions) and copy the results into Z.
- ANALYSIS: Running time of algorithm is given by $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)$
- Cool idea, but not so cool result......since we already discussed a (simpler/naive) $O\left(n^{3}\right)$ algorithm!
- Can we do better?

Strassen's divide-and-conquer

- Strassen's algorithm is based on the following observation:

The recurrence

$$
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)
$$

while the recurrence

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)
$$

- Strassen foud a way to compute only 7 products of $n / 2$-by- $n / 2$ matrices
- With same notation as before, we define the following $7 n / 2$-by- $n / 2$ matrices:

$$
\begin{aligned}
& S_{1}=(B-D) \cdot(G+H) \\
& S_{2}=(A+D) \cdot(E+H) \\
& S_{3}=(A-C) \cdot(E+F) \\
& S_{4}=(A+B) \cdot H \\
& S_{5}=A \cdot(F-H) \\
& S_{6}=D \cdot(G-E) \\
& S_{7}=(C+D) \cdot E
\end{aligned}
$$

- Strassen observed that we can write the product Z as:
$Z=\left\{\begin{array}{ll}A & B \\ C & D\end{array}\right\} \cdot\left\{\begin{array}{cc}E & F \\ G & H\end{array}\right\}=\left\{\begin{array}{cc}\left(S_{1}+S_{2}-S_{4}+S_{6}\right) & \left(S_{4}+S_{5}\right) \\ \left(S_{6}+S_{7}\right) & \left(S_{2}+S_{3}+S_{5}-S_{7}\right)\end{array}\right\}$
- For e.g. let's test that $S_{6}+S_{7}$ is really $C \cdot E+D \cdot G$

$$
\begin{aligned}
S_{6}+S_{7} & =D \cdot(G-E)+(C+D) \cdot E \\
& =D G-D E+C E+D E \\
& =D G+C E
\end{aligned}
$$

- This leads to a divide-and-conquer algorithm:
- Divide X and Y into 8 sub-matrices A, B, C, D, E, F, G, H.
- Compute $S_{1}, S_{2}, S_{3}, \ldots, S_{7}$. This involves 10 matrix additions and 7 multiplications recursively.
- Compute $S_{1}+S_{2}-S_{4}+S_{6}, \ldots$ and copy them in Z. This step involves only additions/subtractions of $n / 2$-by- $n / 2$ matrices.
- ANALYSIS: $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$, with solution $O\left(n^{\lg 7}\right)$.
- Lets solve the recurrence using the iteration method

$$
\begin{aligned}
T(n) & =7 T(n / 2)+n^{2} \\
& =n^{2}+7\left(7 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2}\left(7 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} \cdot n^{2}+7^{3} T\left(\frac{n}{2^{3}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} n^{2}+\left(\frac{7}{2^{2}}\right)^{3} n^{2} \ldots+\left(\frac{7}{2^{2}}\right)^{\log n-1} n^{2}+7^{\log n} \\
& =\sum_{i=0}^{\log n-1}\left(\frac{7}{2^{2}}\right)^{i} n^{2}+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\left(\frac{7}{2^{2}}\right)^{\log n-1}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{\left(2^{2}\right)^{\log n}}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{n^{2}}\right)+7^{\log n} \\
& =\Theta\left(7^{\log n}\right)
\end{aligned}
$$

- Now we have the following:

$$
\begin{aligned}
7^{\log n} & =7^{\frac{\log 7 n}{\log _{7} 2}} \\
& =\left(7^{\log _{7} n}\right)^{\left(1 / \log _{7} 2\right)} \\
& =n^{\left(1 / \log _{7} 2\right)} \\
& =n^{\log _{2} 7} \log _{2} 2 \\
& =n^{\log 7}
\end{aligned}
$$

So the solution is $T(n)=\Theta\left(n^{\lg 7}\right)=\Theta\left(n^{2.81 \ldots}\right)$

- Note:
- We are 'hiding' a much bigger constant in $\Theta()$ than before.
- Currently best known bound is $O\left(n^{2.376 . .}\right)$ (Coppersmith and Winograd'78).
- Lower bound is (trivially) $\Omega\left(n^{2}\right)$.
- Big open problem!!
- Strassen's algorithm has been found to be efficient in practice once n is large enough. For small values of n the straightforward cubic algorithm is used instead. The crossover point where Strassen becomes more efficient depends from system to system.

