
Algorithms Lab 6
(Divide-and-conquer, dynamic programming)

Laura Toma, csci2200, Bowdoin College

This week’s topics

• Divide-and-conquer:

– Karatsuba integer multiplication

– Strassen’s algorithm for matrix multiplication

– Maximum partial subarray

• Dynamic programming (board game and rod cutting)

In-class (collaboration level 01)

Playing the board game.

Homework problems (Collaboration level 12)

1. You are given a sorted array of numbers where every value except one appears exactly twice;
the remaining value appears only once. Design an efficient algorithm for finding which value
appears only once.

Example: Here are some example inputs to the problem:

1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8

10, 10, 17, 17, 18, 18, 19, 19, 21, 21, 23

1, 3, 3, 5, 5, 7, 7, 8, 8, 9, 9, 10, 10

1Collaboration level 0: everything allowed!
2Collaboration level 1: verbal collaboration without solution sharing. You are allowed and encouraged to discuss

ideas with other class members, but the communication should be verbal and additionally it can include diagrams on
board. Noone is allowed to take notes during the discussion (being able to recreate the solution later from memory is
proof that you actually understood it). Communication cannot include sharing pseudocode for the problem. Check
complete guidelines at: https://turing.bowdoin.edu/dept/collab.php)

1



2. The skyline problem/the upper envelope problem: In this problem we design a divide-and-
conquer algorithm for computing the skyline of a set of n buildings.

A building Bi is represented as a triplet (Li, Hi,Ri) where Li and Ri denote the left and
right x coordinates of the building, and Hi denotes the height of the building (note that the
x coordinates are drawn boldfaced.)

A skyline of a set of n buildings is a list of x coordinates and the heights connecting them
arranged in order from left to right (note that the list is of length at most 4n).

Example: The skyline of the buildings

{(3, 13,9), (1, 11,5), (12, 7,16), (14, 3,25), (19, 18,22), (2, 6,7), (23, 13,29), (23, 4,28)}

is
{(1, 11), (3, 13), (9, 0), (12, 7), (16, 3), (19, 18), (22, 3), (23, 13), (29, 0)}

(note that the x coordinates in a skyline are sorted).

5 10 15 20 25 300

5

10

15

20

5 10 15 20 25 300

5

10

15

20

buildings skyline

(a) Let the size of a skyline be the number of elements (tuples) in its list.

Describe an algorithm for combining a skyline A of size n1 and a skyline B of size n2

into one skyline S of size O(n1 + n2). Your algorithm should run in time O(n1 + n2).

(b) Describe an O(n log n) algorithm for finding the skyline of n buildings.

3. Rod cutting:

(a) Describe a non-recursive, dynamic programming algorithm for finding the maximum rev-
enue obtainable from a rod of length n, given a price array p[1..n] (where p[i] represents
the revenue of selling a rod of length i). Analyze its running time.

(b) Describe how to augment your solution for the rod cutting problem so that it computes
the actual cuts corresponding to the optimal revenue, instead of just the revenue.

2



4. Greedy rod cutting: Max suggested the following strategy as an optimization to the
dynamic programming solution: when determining the next cut, instead of trying all possi-
bilities, choose to cut a piece of length i such that the revenue per length pi/i is maximized.
This is called a greedy strategy, because it checks all choices “superficially” (w/o recursion)
and chooses the option that looks “locally” best, without exploring all choices “deeply”. Be-
cause the choices are not explored deeply, this implies that: (1) greedy algorithms are usually
faster than their DP counterparts; (2) they are not always correct.

Note that if this particuar greedy strategy for rod cutting were correct, then we could solve
the problem in O(n) time plus an initial sort (instead of O(n2) with dynamic programming).

Note that a greedy strategy always “works” in the sense that it computes something —- the
question to ask is: “Is it correct?” A greedy strategy (for the rod cutting problem) is correct
if it computes the optimal revenue obtainable for any n and for any price array p[1..n].

To prove a greedy strategy correct we need to show that for any input, it computes the
optimal output (more on this in class).

To prove a greedy strategy wrong, it’s sufficient to find one example (of input) where the
greedy strategy will lead to a sub-optimal (and hence wrong) answer. This is called a coun-
terexample.

Prove that this strategy is not correct by showing a counterexample.

3


