
Algorithms Lab 10

Homework (Collaboration1level:1)

1. Consider a directed graph G, and assume that instead of shortest paths we want to
compute longest paths. Longest paths are defined in the natural way, i.e. the longest
path from u to v is the path of maximum weight among all possible paths from u to
v. Note that if the graph contains a positive cycle, then longest paths are not well
defined (for the same reason that shortest paths are not well defined when the graph
has a negative cycle). So what we mean is the longest simple path, (a path is called
simple if it contains no vertex more than once).

Show that the the longest simple path problem does not have optimal substructure by
coming up with a small graph that provides a counterexample.

Note: Finding longest (simple) paths is a classical hard problem, and it is known to
be NPC (NP-complete).

2. Prove that the following claim is false by showing a counterexample:

Claim: Let G = (V,E) be a directed graph with negative-weight edges, but no negative-
weight cycles. Let w,w < 0, be the smallest weight in G. Then one can compute SSSP
in the following way: transform G into a graph with all positive weights by adding
−w to all edges, run Dijkstra, and subtract from each shortest path the corresponding
number of edges times −w. Thus, SSSP can be solved by Dijkstra’s algorithm even on
graph with negative weights.

3. (CLRS 24.3-6) We are given a directed graph G = (V,E) on which each edge (u, v) has
an associated value r(u, v), which is a real number in the range [0, 1] that represents
the reliability of a communication channel from vertex u to vertex v. We interpret
r(u, v) as the probability tht the channel from u to v will not fail, and we assume
that these probabilities are independent. Give an efficient algorithm to find the most
reliable path between two given vertices.

1Collaboration level 1: verbal collaboration without solution sharing. You are allowed and encouraged
to discuss ideas with other class members, but the communication should be verbal and additionally it can
include diagrams on board. Noone is allowed to take notes during the discussion (being able to recreate the
solution later from memory is proof that you actually understood it). Communication cannot include sharing
pseudocode for the problem. Check complete guidelines at: https://turing.bowdoin.edu/dept/collab.php

1

4. (GT C-7.7) Suppose you are given a diagram of a telephone network, which is a graph
G whose vertices represent switching centers, and whose edges represent communica-
tion links between the two centers. The edges are marked by their bandwidth. The
bandwidth of a path is the minimum bandwidth along the path. Give an algorithm
that, given two switching centers a and b, will output a maximum bandwidth path
between a and b.

5. All-Pair-Shortest-Paths via matrix multiplication: In the APSP problem the
goal is to compute the shortest path between all pairs of vertices u, v ∈ V . Note that
the output is of size Θ(|V |2) which means any algorithm for APSP runs in Ω(|V |2).

(a) We can solve the problem simply by running Dijkstra’s algorithm |V | times. What
is the running time of this approach? What does the running time become for
sparse graphs (E = θ(V)) and for dense graphs (E = θ(V 2))?

We can obtain another APSP algorithm by working on adjacency matrix of the
graph, which we denote by A: for weighted graphs, aij is equal to the weight wij

of the edge (vi, vj); wij is assumed to be ∞ is the edge does not exist.

Let A,B be two matrices, and let C = A ·B. Remember that

cij =
n∑

k=1

aik · bkj

We redefine the
∑

and · operators in matrix multiplication to mean minimum
and +, respectively. That is,

cij = mink=1..n{aik + bkj}

(b) What does A ·A represent in terms of paths in graph G? What about min{A,A ·
A}?

(c) Sketch an algorithm for computing APSP using this approach and estimate its
running time.

(d) Improve your algorithm by being smart about how you compute powers.

Hint: aim to compute an in O(lg n) rather than in O(n) time.

(e) Describe how this corresponds to dynamic programming.

Hint: consider the following subproblem: dk(u, v) is the shortest path from u to v
that consists of at most k edges.

2

