Algorithms Lab 7

The problem set is due in one week. The goal of the labs is to give you practice problems
to work on. More important that getting the right answers is the process of coming up with
the solution. Discussing and bouncing ideas with peers in the classroom can be useful, if
done in the right way. If your exam grade was lower than your lab average, you should work
alone and use the TAs, not your peers, for questions. If you end up discussing problems with
your peers, list their names.

In lab

1. Complete all questions in the rod-cutting handout.

Also: Describe how to augment your solution for the rod cutting problem so that it
computes the actual cuts corresponding to the optimal revenue, instead of just the
revenue. For example, let’s say that the optimal revenue for a rod of length 12 was
achieved by cutting the rod at {5,5,2}. Show how to compute these cuts.

Homework

1. Write code, in a language of your choice, to implement the rod cutting problem. You
need to implement TWO functions:

One that corresponds to solving the problem recursively without DP. You could
name it maxrev_recursive.

One that corresponds to solving the problem with DP (it can be recurive or not,
your choice). You could name it maxrev_DP.

Each function should take i (the length of the rod) as variable and should retun
the optimal revenue of cutting a rod of length i.

The array that holds the prices can be a global.

The length of the rod n has to be read from the command line. If you use C/C++,
use argc, argv. Use something similar if you use python, but make sure that the
user does not need to edit your code to change n.

Initialize the and price array with random values and (assume that prices integers),
but come up with a reasonable scheme where prices are generally not decreasing
(e.g.: arod of length 10 should get a price that’s the same or better than a rod
of length 9).



e Your code shoud time the two functions functions and show the timings. For
example when I run Ryan’s code, I expect to see something like this:

g++ ryan.cpp -o ryan

./ryan 100

you entered n=100

running rev_dynprogr with n=100: maxrev= 128, total time
running rev_recursive with n=100: maxrev= 128, total time

e Test both functions on increasing values of n, until you notice a significant differ-
ence in running time between the two methods.

e Run your code on the price array in the handout, and print how long the two
functions take, and what maximum revenue you get.

e What to turn in: email me the .cpp file or the python file. When you hand in the
lab, attach a hard copy of your code, and the results of running your code (1) on
the array in the handout; and (2) on a random array of size n large enough so
that teh DP solution is significantly faster.

e This problem is individual, you cannot have a partner. But you can discuss it
with anyone in the class, as long as you follow the honor code.

2. Someone suggets the following strategy as an optimization to our dynamic program-
ming solution: when you determine the next cut, instead of trying all possibilities, go
with a piece that maximizes the revenue per length. This is called a greedy strategy,
because it greedily chooses the option that looks locally best, without exploring the
choices “deeply”.

Naturally, greedy strategies always work in the sense that they always compute some-
thing —- the question for a particular greedy strategy is whether it always computes
the correct (optimal) solution. In this case we say that the greedy strategy is correct.

If this particuar greedy strategy for rod cutting is correct, then we could solve the
problem in O(n) time plus an initial sort (instead of O(n?) with dynamic programming).

Prove that this strategy is not correct by showing a counterexample.

3. You have been hired to design algorithms for optimizing system performance. Your
input is an array J[1..n] where J[i] or J; represents the running time of job i; jobs do
not have specific start and end times, but they can be started at any time (this is a
different scenario than in interval scheduling). The running times are integers.

Generally speaking, your task is to find an optimal load balance of these tasks over
two processors.

Design an algorithm for determining whether there is a subset S in J such that the
running time of the elements in S sum up precisely to the same amount as the sum
of the elements not in S; more formally, 3>, cs J; = > j.cj_s Ji- The algorithm should
run in time O(n - N), where N is the sum of the running times of the n jobs.



