
Final Review

1. REVIEW TOPICS

—Java basics
—Sorting and searching

—linear and binary search
—bubble sort, insertion sort, selection sort

—Linked lists
—lists vs. arrays
—operations on lists and analysis
—singly LL, doubly LL, circular lists

—Program analysis
—growth rate: big-Oh, big-Theta
—finding the order of growth of an expression
—analyzing running times of algorihms
—comparing (running tim of) algorithms

—Recursion
—simple recursion examples
—towers of Hanoi
—blob counting,flow, maze
—generating permutations, subsets, subset sum

—Stacks and queues
—functionality
—implementation with vectors and lists

—Searching with stacks and queues
—the general framework
—breadth-first search and depth-first search
—trade-offs between DFS, BFS
—examples: missionary and cannibals puzzle, maze

—Recursive solutions with marking
—flow, blob count, maze, percolation

—Maps and hashing
—operations supported by a map
—hashing and collisions with chaining, open addressing
—load factor and performance
—what is expected of a good hash function

—Trees
—computing height, level, size
—traversals (post-order, pre-order)

—Binary search trees
—definition
—in-order traversal

csci210: Data Structures Spring 2011



2 · Final Review

—height as function of n (size)
—basic operations: search, insert, delete
—more operations: min, max, successor, predecessor
—sorting with a binary search tree

—Comparison of hash tables and binary search trees.
—Python

2. COURSE OUTCOMES

After this class you should be comfortable with the fundamental computer science
algorithms and data structures, be able to use them to model and solve a problem,
discuss their efficiency, be able to go from concepts to details, from theory to
practice and implement a problem from scratch, and be able to debug your code.

More precisely,

—Knowledge of the fundamental data structures (arrays, vectors, lists, stacks,
queues, trees, binary search trees, maps, hash tables) and basic algorithmic
techniques (recursion; divide-and-conquer; backtracking, breadth- and depth-first
search).

—Ability to analyze the asymptotic performance of fundamental data structures
and discuss which structure is better in what circumstances and what are the
trade-offs.

—Ability to use a data structure without knowing its implementation, just its
interface.

—Knowledge of the efficient implementation of the fundamental data structures
and what lies behind Java class like Stack, Vector, etc when you use them in
your code.

—- Familiarity with the general ideas for sorting (insertion sort, selection sort,
bubble sort, merge-sort) and searching (linear search, binary search, binary search
trees, hashing)

—Problem solving: the ability to approach a problem and break it into simpler
blocks

—And last but not least, the ability to implement your code in Java, search the
Java doc files, debug and get it to work.

csci210: Data Structures Spring 2011.


