
A Qui
k Introdu
tion to PythonDanny Yoo (dyoo�hkn.ee
s.berkeley.edu)Mar
h 15, 20011 Introdu
tionHello! This is a small introdu
tion for Python, a high level, programmer-friendly language. I'll assume thatyou've programmed in another languages like C, Java, or S
heme, in whi
h
ase, I hope you will be pleasantlysurprised by Python's elegan
e! If not, it's still my hope that most of this stu� will make sense for you.So. . . Python! If you're trying to prototype a program or write a useful s
ript, you may �nd Python one ofthe best tools for your job. More importantly, I think it's great fun to write Python programs. This handoutwill try to be a gentle but brief introdu
tion to the Python language, so it might be a little slow for some, un-ful�lling for others. I'm also de�nitely skipping some details here and there, so if you'd like a more detailed in-trodu
tion, you may be interested in the oÆ
ial Python tutorial at http://www.python.org/tut/index.html,whi
h is a dive o� the deep end of the pool, but is still holy writ. There are also many good introdu
tionsto Python at http://www.python.org/Intros.Let's begin to explore Python.2 Running PythonThe �rst question you might ask is, \How do I run Python?" On almost all Unix
omputers, we
an usuallytype python at our prompt. Here's what it looks like on my ma
hine:dyoo�einfall:~/work/python$ pythonPython 2.1b1 (#1, Mar 4 2001, 22:57:21) [GCC 2.95.2 20000220 (Debian GNU/Linux)℄ on linux2Type "
opyright", "
redits" or "li
ense" for more information.>>>We're brought to an intera
tive interpreter prompt whi
h lets us type in Python statements. For example:>>> print "Hello World"Hello WorldFor the majority of this introdu
tion, I'll introdu
e new features by trying them out on the intera
tive in-terpreter. The interpreter itself is an invaluable tool for debugging and exploring our Python programs. Nor-mally, however, we'd write a prepared �le of Python statements into a �le, say, for example, helloworld.py.If we do this, we
an run our Python \s
ript" by feeding it as an argument to Python:dyoo�einfall:~/work/python$
at helloworld.pyprint "Hello World"dyoo�einfall:~/work/python$ python helloworld.pyHello Worldand if we really want to make a python s
ript look like an exe
utable, we
an insert in the magi
 line#!/usr/bin/env python, whi
h will tell the system to treat this �le as a Python program:dyoo�einfall:~/work/python$
at helloworld.py#!/usr/bin/env python 1

print "Hello World"dyoo�einfall:~/work/python$
hmod +x helloworld.pydyoo�einfall:~/work/python$./helloworld.pyHello WorldThat's how we start up Python, so let's look at the things we
an do with it.3 Fun
tionsA high-level programming language should make it easy to write modular fun
tions, and Python is noex
eption. In order to
reate fun
tions, we use the keyword def, whi
h stands for \de�ne". When we'reusing it, we tell Python what arguments the fun
tion takes in.>>> def sayHello():... print "Hello!"...>>> sayHello<fun
tion sayHello at 0x810e244>>>> sayHello()Hello!>>> def double(x):... return x + x...>>> double(5)10>>> double('
s')'
s
s'>>> def fa
torial(x):... if x == 0: return 1... else: return x * fa
torial(x-1)...>>> fa
torial<fun
tion fa
torial at 0x810d88
>>>> fa
torial(5)120One thing to noti
e is that Python programs have a
urious la
k of semi
olons or bra
es. In Python,statements are terminated by the end of a line, and we use indentation to group blo
ks of statementstogether. If we really need to, we
an use the
ontinuation
hara
ter \ to write a long
ommand:>>> def squareSum(a, b):... return a**2\... + b**2...but this is usually very rare.By the way, if we don't spe
ify a return value of our fun
tion, we'll automati
ally get the None valueba
k to us.>>> type(x)<type 'None'>and by using the return keyword, we
an return a spe
i�
 value ba
k to our
aller. Otherwise, fun
tionsare fairly straightforward. There are quite a few \built-in" fun
tions in Python that make our lives easier.We'll introdu
e them every so often; there's a
omplete list of them in the Python Library Referen
e athttp://python.org/do
/
urrent/lib/lib.htmlNow that we've brie
y introdu
ed fun
tions, let's talk about Python's variables.2

4 VariablesHere are some examples of variables in Python:>>> num = 42>>> name = 'beowulf'>>> hashtable = { 0 : 'zero', 1 : 'one', 2 : 'two', 3 : 'three' }The �rst thing that we see is that we don't need to prede�ne what type of thing a name binds to; a name
an stand for anything:>>> x = 'ma
beth'>>> x = 3.1415926although, by
onvention, we try to use a ni
e naming
onvention to avoid
onfusing ourselves.If we really want to look at the type of a value, we
an use the built-in type() fun
tion:>>> type(num)<type 'int'>>>> type(hashtable)<type 'di
tionary'>but in many
ases, we
an write programs without having to worry too mu
h about testing for types.If we want to
reate a variable name, but not give it an initial value, we
an assign it the None value:>>> result = None>>> type(result)<type 'None'>In general, None is very mu
h like null in other programming languages.Let's talk about some of the kinds of variables Python provides us.4.1 NumbersWe start o� with numbers, sin
e they're one of the most fundamental types. As we'd expe
t, we
an usemany familiar operations:>>> 1 + 12>>> 25 * 26650>>> 22/7.3.1428571428571428>>> 1 + 2 + (3 * 4 * (5 / 6))3but we still need to be
areful about the behavior of integer division. To
onvert an integer to a
oat, we
an either multiply by 1.0, or use the float()
onversion fun
tion instead:>>> float(100)100.0For symmetry, Python also gives us a int() fun
tion that lets us
oer
e anything into an integer.Python also provides a 'long integer' numeri
 type that's an integer of unbounded range; we append anl or L to the end of the number. So we
an do this:>>> 2**128L ## Exponentiation340282366920938463463374607431768211456L 3

without any qualms | useful for those
ombinatori
s problems that deal with huge quantities.Finally, for the engineers, Python even provides a
omplex number type:>>> mynum = 0+1j>>> mynum**2(-1+0j)whi
h is pretty ni
e, if a tad spe
ialized. I won't even tou
h on some of the extended numeri
 types providedoutside of
ore Python, but if you're
urious, there are matrix types within Numeri
 Python, whi
h
an byfound at http://numpy.sour
eforge.net.4.2 StringsThis next se
tion is a bit long, but that's be
ause manipulating strings is very useful in many appli
ationsof Python.First, let's show some examples of strings:>>> msg = 'i am a string with a \ttab in it'>>> msg'i am a string with a \ttab in it'>>> print msgi am a string with a tab in it>>> print 'this is a string with a \\ba
kslash'this is a string with a \ba
kslash>>> print 'this string\... spans multiple\... lines'this stringspans multiplelines>>> '''I am a... multi line... string''''I am a\nmulti line\nstring'Python strings are ni
e be
ause we don't need to worry about allo
ating them; they handle their own spa
e,so it's very easy to manipulate and pass them around between fun
tions. Building literal strings usuallyrequires us to surround the text with quotes, but we
an also
oer
e anything into a string by using thestr() fun
tion:>>> n = 2**20>>> str(n) + str(n)'10485761048576'In Python, there's no di�eren
e between " and '; they both delimit string literals. The reason this isuseful is be
ause we
an use one kind of quote within another, and not have to worry too mu
h about abruptquote
losing:>>> "Hygela
's thane s
outed by the wall in Grendel's wake.""Hygela
's thane s
outed by the wall in Grendel's wake.">>> 'He shouted, "Run away! Run away!"''He shouted, "Run away! Run away!"'The last example with triple quotes above is an example of a multi-line string; by using triple quotes""", we
an make strings that span a
ross lines pretty easily.On
e we have strings, we
an manipulate them with a ri
h set of operations. For example, we
an\multiply" strings by a number: 4

>>> header = '*' * 40>>> print header**and \add" strings together:>>> 'russians de
lare war' + 'rington vodka is deli
ious''russians de
lare warrington vodka is deli
ious'>>> 'a' + 'b' + '
''ab
'Unlike Perl, Python will not automati
ally
oer
e a string into a number, so:>>> multiplier = '3'>>> print 'hello' * multiplierTra
eba
k (most re
ent
all last):File "<stdin>", line 1, in ?TypeError: unsupported operand type(s) for *doesn't quite work: we need to tell Python to expli
itly
onvert that string into a number �rst:>>> print 'hello' * int(multiplier)hellohellohellowhi
h might
at
h a few people o�-guard the �rst time they see it. In general, Python's philosophy is to beexpli
it whenever there's a sour
e of ambiguity, to improve the readability of our programs.Another operation that's very useful is string interpolation:>>> template = 'language: %s\t
reator: %s'>>> template % ('python', 'guido')'language: python\t
reator: guido'>>> template % ('perl', 'wall')'language: perl\t
reator: wall'whi
h works very mu
h like the sprintf fun
tion in C, with a few ni
e extensions. String interpolation islike Mad Libs, and it's very useful when we want to write string templates. Be
ause all types
an be
oer
edinto strings, it's very
ommon to just use %s as our format type.One thing that might surprise C programmers is that Python has the notion of immutable strings |on
e we
reate a string, we
an't
hange its internal
ontents:>>> greeting = 'hella world'>>> greeting[4℄'a'>>> greeting[4℄ = 'o'Tra
eba
k (most re
ent
all last):File "<stdin>", line 1, in ?TypeError: obje
t doesn't support item assignmentHowever, it's pretty easy to take \sli
es" out of a string:>>> greeting[:4℄'hell'>>> greeting[5:℄' world'and use string
on
atenation:>>> greeting = greeting[:4℄ + 'o' + greeting[5:℄>>> greeting'hello world' 5

for most
ommon string tasks. If we really need to look at a string,
hara
ter by
hara
ter, we
an
onverta string into a list:>>> list('ab
defg')['a', 'b', '
', 'd', 'e', 'f', 'g'℄do our manipulations on the list, and stit
h it ba
k into a string. But there's usually a mu
h easier way todo this kind of string manipulation without pi
king out
hara
ters: Python provides a ri
h range of stringmanipulation fun
tions in its string and re (regular expression) library modules. (I'll see if I
an squeezea regular-expression example at the end of this introdu
tion.)4.3 Files: Opening, reading, and writingBefore we go on with the other types of variables, it would be ni
e to apply some of these ideas on somethinguseful: how do we read input from the user? Let's show how to open �les, read their
ontents, and spit outthe string to standard output:>>> file = open('helloworld.py')>>>
ontents = file.read()>>> print
ontents#!/usr/bin/env pythonprint "Hello World"We
an open up �les by using the open() built-in fun
tion; what we get ba
k is an instan
e of a �le obje
t,something that supports �le operations like reading, and writing. Let's see what we
an do with �les:>>> dir(file)['
lose', '
losed', 'fileno', 'flush', 'isatty', 'mode', 'name','read', 'readinto', 'readline', 'readlines', 'seek', 'softspa
e','tell', 'trun
ate', 'write', 'writelines', 'xreadlines'℄Although there are many methods, we don't need to feel too overwhelmed. For the most part, we
an workwith read(), readline(), and write() fun
tions for the majority of our �le pro
essing jobs.open() takes in an optional \mode" argument that tells it how we want to use a �le: While we're opening�les, we
an tell Python to make the �le writable by giving it the \w" option:>>> f = open('testfile.txt', 'w')>>> f.write('this is a test.\nHello world')>>> f.
lose()>>> print open('testfile.txt').read() ## a
ommon idiom to
on
isely read a filethis is a test.Hello worldWhew! Let's talk a little bit about lists, tuples, and di
tionaries; afterwards, we
an do a simple examplethat ties these ideas together.4.4 Lists and TuplesLists and tuples both represent sequen
es of data. Let's talk about lists �rst. We
an make Python lists byputting bra
es, \[" and \℄", around a
olle
tion of values. For example:>>> names = ['john', 'paul', 'george', 'ringo'℄assigns the variable names to the list that
ontains those four strings.That wasn't too bad! Lists are heterogeneous and easily nestable:6

>>> authors_books = [['knuth', 'tao
p'℄, ['tolkien', 'lotr'℄,... [['abelson', 'sussman'℄, 'si
p'℄ ℄>>> grabbag = [22/7., 'pi', ['another list'℄℄>>> grabbag[3.1428571428571428, 'pi', ['another list'℄℄and lists even support the notion of addition and multipli
ation:>>>
aesar = ['pizza'℄>>>
aesar * 2['pizza', 'pizza'℄On
e we have a list, how do we get at its elements? We
an a

ess any parti
ular element of a list withthe indexing operator \[℄":>>> names[0℄'john'>>> authors_books[2℄[['abelson', 'sussman'℄, 'si
p'℄>>> authors_books[2℄[0℄['abelson', 'sussman'℄and we
an even use negative indi
es, whi
h start
ounting from the end of the list ba
kwards:>>> names[-1℄'ringo'>>> names[-2℄'george'But not only
an we get at single elements of a list, but we
an also take \sli
es", that is, subsequen
esof our lists:>>> numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄>>> numbers[0:5℄ ## numbers[a:b℄ --> [a, b)[0, 1, 2, 3, 4℄>>> numbers[7:℄[7, 8, 9, 10℄where we tell Python the beginning and ending points of the sli
e. We saw this sli
ing behavior with strings,and it's
omforting to note that their behavior is fairly
onsistent with lists.In fa
t, many of the operations that work on lists work equally well on strings. The built-in len()fun
tion, for example,
an give us the length of any \sequen
e-like" thing:>>> mylist = ['g', 'k', 'p'℄>>> len(mylist)3>>> mystr = 'super
alifragisliti
expialido
ious'>>> len(mystr)34Furthermore, in a few se
tions, we'll see that the looping
onstru
t for
an work equally well along stringsas well as lists.A ni
e thing about lists is that they
an
hange and expand. For example, we
an append to a list:>>> mylist = [℄>>> mylist.append('guns')>>> mylist.append(['germs'℄)>>> mylist.append([['steel'℄℄)>>> mylist['guns', ['germs'℄, [['steel'℄℄℄ 7

and start deleting elements. . . or even
ut whole sli
es out!>>> toppings = ['pepperoni', 'arti
hoke', 'tomato', 'an
hovy'℄>>> del toppings[0℄>>> toppings['arti
hoke', 'tomato', 'an
hovy'℄>>> del toppings[1:3℄>>> toppings['arti
hoke'℄One very neat thing about lists is that they know how to sort themselves with their sort() method:>>> mystr = 'qwertyuiopasdfghjklzx
vbnm'>>> letters = list(mystr)>>> letters['q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p', 'a', 's', 'd','f', 'g', 'h', 'j', 'k', 'l', 'z', 'x', '
', 'v', 'b', 'n', 'm'℄>>> letters.sort()>>> letters['a', 'b', '
', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm','n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'℄Whew! When we talked about �les in the previous se
tion, we saw that we
an use the dir() fun
tionto query what things it
an do. Likewise, we
an apply dir() on a list:>>> dir(toppings)['append', '
ount', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort'℄but let's leave the other fun
tions for another introdu
tion.You might wonder: is there an easy way of building lists fast? For example, let's say that I wanted tomake a list of the numbers from zero to 9. Can we do this easily? Yes! Python provides a fun
tion
alledrange() whi
h generates the numbers from 0 to n, ex
luding the n.>>> range(10)[0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄or we
an take every other element from 0 to 20:>>> range(0, 20, 2)[0, 2, 4, 6, 8, 10, 12, 14, 16, 18℄range() might seem like an arbitrary fun
tion, but it does be
ome very useful in
onjun
tion with the forloop.Finally, I should brie
y mention tuples. We
an
onstru
t tuples by using parentheses:>>>
hildren = ('hermione', 'ron', 'harry')>>> tea
hers = ('lupin', 'quirrell') + ('snape',)Tuples have many of the features of lists, but like strings, they're immutable and
an only support additionand indi
ing. There are a few te
hni
al reasons why Python supports both lists and tuples: Tuples are alittle more eÆ
ient to
onstru
t in Python, so they're internally used to pass parameters between fun
tions.Also, be
ause they're guaranteed to be immutable, they
an be used as keys to a hashtable. Speaking ofwhi
h, let's look at di
tionaries now.
8

4.5 Di
tionariesIn CS terms, a Python di
tionary is a hashtable, a
ontainer that holds things like a list. The big di�eren
ebetween a list and a di
tionary is that the \indi
es" of a di
tionary don't have to be numbers! We
onstru
tdi
tionaries by using
urly bra
es {}:>>> myhash = {}>>> myhash['name'℄ = 'boromir'>>> myhash['pizza'℄ = "za
hary's">>> myhash.keys()['pizza', 'name'℄>>> myhash.values()["za
hary's", 'boromir'℄>>> myhash.items()[('pizza', "za
hary's"), ('name', 'boromir')℄>>> myhash['name'℄'boromir'>>> di
t2 = { 'holt' : 'how
hildren fail',... 'polya' : 'how to solve it',... }>>> di
t2.items()[('holt', 'how
hildren fail'), ('polya', 'how to solve it')℄Be
ause the indi
es
an be any immutable type, di
tionaries are great when we want to store key/valuepairs. We
an use strings, numbers, and tuples as our keys in our di
tionary, and pra
ti
ally anything elseas our values. Pythons uses di
tionaries internally for a lot of stu�, in
luding its implementation of OOP.Di
tionaries are simple to use, but are one of the most powerful tools a Python programmer has; we'll seedi
tionaries in many of the examples below.That's de�nitely enough about variables | my apologies if that went a little long. However, it's ni
e toknow that, on the whole, Python's variable types have a a
onsistent interfa
e.5 Control Stru
turesNow that we know a bit about variables, let's talk about the
ontrol stru
tures that let us make our programsa little smarter.5.1 Truth and FalsehoodBy the way, I'd better qui
kly mention that Python
onsiders the number 0, the empty string "", the emptylist [℄, the empty tuple (), and the value None to be false | everything else is a true value.5.2 if/elifIn everyday life, we �nd ourselves needing to make a de
ision. For example,if the weather is
loudy:stay insideotherwise, if the weather is hot:go for a swimelse:walk outside
ould be
onsidered a series of de
isions. It turns out that we have the same need to make de
isions whenwe're programming. Let's see how we
an write if statements in pseudo
odeish Python:9

if weather.
loudy():self.stayInside()elif weather.hot():self.swim()else:self.walk()Unlike C's if statement, we don't need to put bra
es, nor do we need to put parentheses around our testexpression. Let's see some real if statements:>>> num = 42>>> if num % 2 == 0:... print 'num is even'... else:... print 'num is odd'...num is even5.3 Emulating \swit
h"Python doesn't quite support the swit
h statement of other languages, but with some
reativity, we
an
ook something up that has similar fun
tionality:>>> def a
tionHi(): print "hi"...>>> def a
tionBye(): print "bye"...>>> table = { 'start' : a
tionHi,... 'stop' : a
tionBye }>>>
md = 'start'>>> if table.has_key(
md): table[
md℄()... else: print "Invalid
ommand"...hiUsing di
tionaries that have referen
es to fun
tions usually works very well for these kind of situations.5.4 for/inThe for loop in Python will look familiar to shell s
ripters: instead of iterating a variable until a
onditionfails, we iterate through a list of things:>>> for x in ['a', 'b', '
', 'd'℄:... print 'this is the letter', x...this is the letter athis is the letter bthis is the letter
this is the letter d>>> for name, value in { 0 : 'zero', 1 : 'one', 2 : 'two' }.items():... print 'the numeral of %s is %d' % (value, name)...the numeral of two is 2the numeral of one is 1the numeral of zero is 0 10

If our ba
kground in programming is in C or Java, we shouldn't despair about Python's for loop | here'swhere range()
omes into play: For the traditional for-loop from i = 0 to n, we
an use range()!>>> sum = 0>>> for i in range(10):... sum = sum + i...>>> i9>>> sum45>>> for i in range(10, 20, 2):... print i,...10 12 14 16 18This is ni
e is be
ause there's less of a
han
e of writing a buggy if statement, sin
e we're working onelements of a list. Furthermore, in normal
ases, there's no way to write an in�nite loop with for, be
ausewe have to do some hustling to make an in�nite sequen
e.If we want to modify a list in-pla
e, it's a Python idiom to iterate over the indi
es of a list. For example,let's square a list of numbers:>>> nums[0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄>>> for i in range(len(nums)):... nums[i℄ = nums[i℄ * nums[i℄...>>> nums[0, 1, 4, 9, 16, 25, 36, 49, 64, 81℄In summary, for loops are straightforward: we give it the variable we want iterated, as well as thesequen
e we want to iterate over. By sequen
e, I mean a tuple, list, or even a string:>>> for letter in 'aeiou':... print letter, 'is a vowel'...a is a vowele is a voweli is a vowelo is a vowelu is a vowelSometimes, though, the for loop might not be powerful enough for a parti
ular task: we
an't really usePython's for loop to loop until a
ertain
ondition is true or not. For this kind of
onditional looping, weneed the while loop instead, and that's our next topi
.5.5 whileLet's take a look at a simple while loop:>>> i = 0>>> while i < 5:... print i, i**2, i**3... i = i + 1...0 0 0 11

1 1 12 4 83 9 274 16 64Like the if statement, we should tell Python what
ondition needs to hold true as we loop through the body.Sin
e we have more
ontrol over the looping, we
an do more devious things. For example, if we want towrite an in�nite loop, we
an write this:>>> while 1:... # do stuff here... pass # let's do a no-op... # [Time passes. I press Ctrl-C to interrupt.℄Tra
eba
k (innermost last):File "<stdin>", line 1, in ?KeyboardInterruptBoth the for and while loop
onstru
t support the use of the keywords break and
ontinue, whi
h letus \break" out of a loop, or go ba
k to the loop's beginning. For example, by using break:>>> while 1:...
md = raw_input()... if
md == 'quit': break...hellolet me out of herequit>>>we
an dupli
ate the behavior of a do/while
onstru
tion from the C-style languages. I won't go too mu
hinto the details here be
ause I'm very impatient to show the next se
tion: how do we use all these things?How do we put it all together?6 Putting it Together 1:
ountwordsNow that we've gone through a lot of material, it's a good idea to try writing a program that puts theseideas together. Let's try writing a program that takes words from standard input,
ounts how many timesea
h word appears, and prints those results out.In the two programs that follow, we'll need a little bit of fun
tionality from two modules from the standardlibrary: sys and string. We'll see the use of the import and from statements | think of them as a wayof grabbing de�nitions outside of
ore Python. There's a
omplete list of modules in the Library Referen
e,and if you're interested, I'd re
ommend browsing through it.There are several ways we
an approa
h this problem. Here's one way: let's read all the words into alist, and sort those words. If we have a sorted list, it's very easy to
ount how many times we've see aword, be
ause we
an look at
onse
utive elements. I'll need to use sys.stdin to get at standard input, andstring.strip() for its whitespa
e-eating abilities.import sysfrom string import stripwords = [℄while 1:w = strip(sys.stdin.readline())if not w: break 12

words.append(w)words.sort()i = 0while i < len(words):
urrent_word,
ount = words[i℄, 0while i < len(words) and words[i℄ ==
urrent_word:
ount =
ount + 1i = i + 1print
urrent_word,
ountAnother approa
h we
an take is to use a di
tionary that maps words to their distribution
ounts. Forevery word, we
an lookup our di
tionary and gradually in
rement word distributions until we read all thewords. Finally, we print out all the items|both keys and values|in our di
tionary.import sysfrom string import stripdi
t = {}while 1:w = strip(sys.stdin.readline())if not w: breakdi
t[w℄ = di
t.get(w, 0) + 1 ## get(): loopup with default valuefor word,
ount in di
t.items():print word,
ountOne thing to note is that the di
tionary version is a lot simpler, but both versions are still pretty easy toread. Let's look at another program:7 Putting it Together 2:
ounting lines, words, and
hara
tersHere's another example that uses a few more modules from the standard library. This word-
ounting programtakes advantage of string.split(), whi
h
an take in a string, and split it along whitespa
e boundaries.It also uses fileinput.input(), whi
h makes it easy to read input from either �les in our argument list, orfrom standard input.import fileinput # Library modulefrom string import split # split() breaks a spa
e-delimited line into a listl
ount, w
ount,

ount = 0, 0, 0 # l
ount = 0, w
ount = 0, ...for line in fileinput.input(): # Similar to Perl's magi
 while(<>)l
ount = l
ount + 1w
ount = w
ount + len(split(line)) # len() fun
tion works well on both lists

ount =

ount + len(line) # and strings.print l
ount, w
ount,

ount8 Advan
ed Topi
sBelieve it or not, we've just gone through most of
ore Python; everything else is appli
ations of these
on
epts. To make this introdu
tion a little more pra
ti
al, let's explore some of these appli
ations. The�rst we'll
over is regular expressions!
13

8.1 Regular ExpressionsRegular expression are a very
on
ise way of getting a
omputer to re
ognize patterns within strings. Whatdo we mean by patterns? If we look at a line like:The link to python.org's do
umentation is http://python.org/do
.we
an easily pi
k out the http url out of that senten
e. With regular expressions, we
an tell Python howto re
ognize and pull out these kinds of strings for us.We
an a

ess the ma
hinery of regular expressions through its re module. Let's see what re provides:>>> import re>>> dir(re)['DOTALL', 'I', 'IGNORECASE', 'L', 'LOCALE', 'M', 'MULTILINE','S', 'U', 'UNICODE', 'VERBOSE', 'X', '__all__', '__builtins__','__do
__', '__file__', '__name__', '
ompile', 'engine', 'error','es
ape', 'findall', 'mat
h', 'purge', 'sear
h', 'split', 'sub','subn', 'template'℄There's quite a few fun
tions in there! The fun
tion that we'll
on
entrate for this introdu
tion is sear
h().sear
h() takes in a regular expression and a target string that we're sear
hing through, and returns some-thing interesting if it �nds the pattern we're looking for.Let's begin by talking about how we
an des
ribe a
ertain pattern. A regular expression pattern itselfis a string. For example, the string"alpha beta"is a pattern that, when given any string that
ontains \alpha beta" anywhere in it, will mat
h su

essfully.Nothing too ex
iting: normal letters mat
h with letters. But how about:"a+"? Here, the + doesn't literally stand for the plus
hara
ter: instead, it atta
hes a meaning to the
hara
terright before it. This parti
ular example, as a regular expression, means \One or more a's". So if we'relooking for repetition, using + works very well. In regular expression terms, + is a meta
hara
ter, and thereare quite a few of them. We
an list out a few others:� . mat
hes any single
hara
ter� * mat
hes zero or more of the last
hara
ter� ? mat
hes zero or one of the last
hara
terNow that we know a little bit about spe
ifying regular expressions, let's try it out:>>> re.sear
h('a+', 'aaaa')<SRE_Mat
h obje
t at 0x812e028>>>> re.sear
h('a+', 'ba')<SRE_Mat
h obje
t at 0x810
020>>>> re.sear
h('a+', 'b
de')>>> ## No output means no mat
h>>> re.sear
h('sp.m', 'spam')<SRE_Mat
h obje
t at 0x810
020>>>> re.sear
h('sp.m', 'spim')<SRE_Mat
h obje
t at 0x812e028>>>> re.sear
h('sp.m', 'spin')If our regular expression engine
an re
ognize a regular expression within our string, it returns ba
k to us a\Mat
h obje
t" | something that lets us ask it for more information, and otherwise gives us None.Let's take a
ying leap into the unknown | let's show a regular expression that
an re
ognize most httpurls! 14

"http://[\w\.-/℄+\.?(?![\w.-/℄)"Admittedly, trying to �gure out this regular expression takes a lot of time; however, be
ause they're juststrings, we
an break them down,
omment them heavily, and then use them.LETTERS_OR_SYMBOLS = r'[\w\.-/℄+'OPTIONAL_LITERAL_PERIOD = r'\.?'LOOKAHEAD_NOT_LETTER_OR_SYMBOL = r'(?![\w.-/℄)'whole_re_pattern = 'http://' + LETTERS_OR_SYMBOLS + OPTIONAL_LITERAL_PERIOD \+ LOOKAHEAD_NOT_LETTER_OR_SYMBOLThere's something somewhat new here that we haven't seen yet | what's that \r" in front of the quotes?In Python, it's
alled a \raw" string. Basi
ally, it turns o� the spe
ial meaning of the ba
kslash, so that the\ literally means ba
kslash. We'll see raw strings a lot, espe
ially with regular expressions that use a lot ofba
kslashes.Let's see if it works:>>> re.sear
h(whole_re_pattern, 'this is a test without an url')>>> re.sear
h(whole_re_pattern, 'this is a pattern http://with_an_url.')<SRE_Mat
h obje
t at 0x810
020>When we �nd ourselves using a
ertain regular expression over and over, we
an
a
he a regular expressionby
ompile()ing it:>>> myre = re.
ompile(r"http://[\w\.-℄+\.?(?![\w.-℄)")What we get ba
k is a regular expression obje
t that remembers the pattern it uses to sear
h for things.Let's see it in a
tion.>>> myre.sear
h('all your http are belong to us') ## no mat
h>>> myre.sear
h("let's try another url: http://perl.
om.")<SRE_Mat
h obje
t at 0x812eb68>What makes
ompiling a regular expression espe
ially neat is that we
an make lists of regular expressions,put them in di
tionaries, and pass them around as obje
ts, just like any other Python type.If we want to get more information from the sear
h, we
an put parentheses around a region of our regularexpression; in te
hni
al terms, we're de�ning a group. Later on, if our sear
h() is su

essful, we
an laterquery our Mat
h obje
t about what mat
hed using its group() method:>>> myre = re.
ompile(r"(http://[\w\.-℄+)\.?(?![\w.-℄)")>>> myre.sear
h("The website http://python.org is neat").group(1)'http://python.org'I
ertainly
an't do justi
e to regular expressions; they're very powerful and magi
al, and invaluable toanyone working with text manipulation. If you want to know more about them, I'd re
ommend taking a lookat the regular expression do
umentation within the Library Module. Be
ause Python's regular expressionsare similar to Perl's, it's also very useful to read Perl do
umentation on regular expressions, espe
ially TomChristensen's \Far More than Everything You Wanted To Know about Regexps".8.2 CGI[write this later℄8.3 Tkinter[write this later℄ 15

9 AfterwordsAs with any living language, Python has its vo
al speakers. Most of them
hatter in
omp.lang.python,whi
h is one of the friendlier forums on Usenet. Also, there are several mailing lists on python.org that
on
entrate on topi
s like databases, XML parsing, and other esoteri
 stu�.Personally, I parti
ipate in tutor�python.org, the mailing list for people who're learning Python; ifyou're interested,
ome join in! Subs
ribing involves going to the web site:http://mail.python.org/mailman/listinfo/tutorand we'll be happy to answer any questions about learning Python.There are a lot of things I haven't even tou
hed yet in this introdu
tion, like
lasses, fun
tional program-ming, s
oping, or list
omprehension. I'm already pushing past ten pages, so I'd better stop for now. (PlusI'm running out of time typing this!) I'll be happy to expand this material later, if people are interested.Thanks for reading this!

16

