Computer Science 210:
Data Structures

Searching

Searching

The problem: Given a sequence of elements, and a target element, find
whether the target occurs in the sequence
Variations:

« find first occurrence
« find all occurrences

+ find the number of occurrences, etc

Searching is a fundamental problem

For simplicity, let’s assume we have an array of numbers
+ double a[];
+ double tfarget;

and we want to write a method

 //return the position of first occurrence or -1 if not found

* int search (double a[], double target)

Searching

//return the position of first occurrence or -1 if not found

int search (double a[], double target)

Searching

//return the position of first occurrence or -1 if not found

int search (double a[], double target) {
for (int i=0; i< a.length; i++)

if (a[i] == target) return i;

//if we got here, no element matched

return -1;

linear search

Searching

//return the position of first occurrence or -1 if not found

int search (double a[], double target) {
for (int i=0; i< a.length; i++)

if (a[i] == target) return i;

//if we got here, no element matched

return -1;

* best-case (fastest) ?

linear search

* worst-case (slowest) ?

Searching

//return the position of first occurrence or -1 if not found

int search (double a[], double target) {
for (int i=0; i< a.length; i++)

if (a[i] == target) return i;

//if we got here, no element matched

return -1;

linear search

* With linear search, in the worst case we have to examine the entire
input

* Can we do better? (that is, faster)?

* Yes, if the input is sorted

Binary search

 Input: A target and a sequence of elements, sorted (in some order). For
simplicity, we assume increasing (non-decreasing) order.

//return the position of occurrence or -1 if not found
//invariant: a is sorted in increasing order

int binarysearch (double a[], double target)

* Idea: searching in a phone book

* open in the middle; if name comes before the "middle” name, search in the left half. if
name comes after the middle name, search in the right half.

* Examples:

* doubleal] =141, 3,4, 6,7 7 9, 12,14, 18, 56, 67, 89, 100};
* search for 6

* search for 80

Binary Search

//return the position of occurrence or -1 if not found
//invariant: a is sorted in increasing order
int binarysearch (double a[], double target) {

int start, end, middle;
start = O;
end = a.length-1;
while ..2.... §
middle = (start + end)/2;
if (target == a[middle]) return middle;
if (target < a[middle]) end = middle-1;
if (target > a[middle]) start = middle +1;
}

//if we are here, not found

return -1;

Binary Search

« Correctness

Is it correct to throw away half of the input? Can you argue why?

* Analysis:

at the first iteration through the loop, start and end delimit the entire array
at the second iteration through the loop, start and end delimit one half of the array
at the third iteration one quarter of the array

at the fourth iteration one eighth of the array

Notation: let n denote the size of the input array
it iteration ==> a section of size n/2i

How many iterations can there be?

Logarithm review

Binary search

« Assume n = 1,000, 000

+ How many elements does linear search compare?

+ How many elements does binary search compare?

- Intuitively, binary search is (much) more efficient than linear search

+ Thatis, in the worst case. We always think of the worst-case. Best-cases are irrelevant and
offer no guarantees on the performance of an algorithm.

- We will analyze and compare them formally when we talk about algorithm
analysis next week.

Recursive Binary Search

« It’s easy to think of it recursively
« Searching in the first or second half are recursive problems
« We need to give the start and end to the recursive call

//invariant: a[] is sorted in increasing order
//return the position where target is found, or -1 if not found
int binarysearch (double a[], double target) {

//this is the call to the recursive solver

return binsearchRecursive(a, target, O, a.length -1);

// invariant: a[] is sorted in increasing order
//search for target in a[start...end]; return the position where target is found, or -1 if not found

int binsearchRecursive(double a[], double target, int start, int end)

Binary Search

« It’s easy to think of it recursively
« Searching in the first or second half are recursive problems
« We need to give the start and end to the recursive call

// invariant: a[] is sorted in increasing order
//search for target in a[start...end]; return the position where target is found, or -1 if not found

int binsearchRecursive(double a[], double target, int start, int end) {

if (start > end) return -1; without base-case, infinite recursion

//otherwise

int middle = (start+end)/2; //note that it gets truncated

if (target == a[middle]) return middle;

if (target < a[middle]) return binsearchRecursive(a, target, start, middle -1);

return binSearchRecursive(a, target, middle+1, end);

