csci 210: Data Structures
More Recursion




Summary

- Topics: more recursion

Subset sum: finding if there exists a subset of an array that sum up to a given target

Permute: finding all permutations of a given string

- Subset: finding all subsets of a given string




Thinking recursively

« Finding the recursive structure of the problem is the hard part
« Common patterns
 divide in half, solve one half
 divide in sub-problems, solve each sub-problem recursively, “merge”
« solve one or several problems of size n-1
- process first element, recurse on remaining problem

« Recursion
- functional: function computes and returns result.
Example: computing the sum of n numbers; isPalindrome; binary search.

« procedural: no return result (function returns void). The task is accomplished during
the recursive calls.

Example: Sierpinski fractals.

+ Recursion
« exhaustive
* non-exhaustive: stops early




Subset Sum

« Given an array of numbers and a target value, find whether there exists a subset
of those numbers that sum up to the target value.

/Ireturn true if there exists such a subset, and false otherwise

boolean subsetSum (int[] a, int target)

« Example:

+ Recursive structure:
consider the next element in the array
try making a sum WITH this element
try making a sum WITHOUT this element
if neither is possible, return false




Subset Sum

So: consider the next element, it is either in the solution, or not. Try both ways. If
both fail, return false.

Need to keep track of the partial sum so far. When starting a recursive call, need
to know the sum of the current subset. Also need to know the index of the next
element to consider.

void recSubset(int[] a, int target, int i, int sumSoFar)

The problem asked for a subsetSum function with the following signature:
boolean subsetSum (int[] a, int target)

Need a wrapper:
boolean subsetSum (int[] a, int target) {
return recSubset(a, target, 0, 0);




Subset Sum

/i is the index of the next element to consider
//[sumSoFar is the sum of elements included in the solution so far.
boolean recSubset(int[] a, int target, int i, int sumSoFar) {
//basecases
/lwe got it
if (sumSoFar == target) return true;
//we reached the end and sum is not equal to target
if (i == a.length) return false;

/[recursive case: try next element both in and out of the sum
boolean with = recSubset(a, target, i+1, sumSoFar + a[i]);
boolean without = recSubset(a, target, i+1, sumSoFar);
return (with Il without);




Subset Sum

- The tree of recursive calls for recSubset([1, 2, 3, 4], target, 0, 0)




Subset Sum

« You may notice that there is no need to keep both target and sumSoFar as
arguments in recSubset; instead, use target, and subtract from it when you
include an element in a set.

« /i is the index of the next element to consider
boolean recSubset(int[] a, int target, int i) {
//basecases
/lwe got it
if (target==0) return true;
/lwe reached the end and sum is not equal to target
if (i == a.length) return false;

/Irecursive case: try next element both in and out of the sum
boolean with = recSubset(a, target-ali], i+1);

boolean without = recSubset(a, target, i+1);

return (with Il without);




Subset Sum

 Variations

« How could you change the function so that it prints the elements of the subset that sum
to target?
- store partial subsets in another array
« or print element at the end of recursive call

How could you change the function to report not only if such a subset exists, but to count
all such subsets?

Alternative strategy: at each step, chose one of the remaining element to be part of the
subset and recurse on the remaining part.




Permutations

« Write a function to print all permutations of a given string.
- Example: permute “abc” should print: abc, acb, bca, bac, cab, cba.

void printPerm(String s)

« Recursive structure:
Chose a letter from the input, and make this the first letter of the output
Recursively permute remaining input
chose a, permute “bc”. should generate “a” + all permutations of “bc”
chose all letters in turn to be first letters
chose b, permute “ac”: should generate “b” + all permutations of “ac”
chose c, permute “ab”: should generate “c” + all permutations of “ab”

What is the base case?
Can you make sure that each permutation is generated precisely once?




Permutations

So: pick a letter, add it to the solution, recurse on remaining

When starting a recursive call, we know the list of letters chosen so far; that is, we
know the first part of the permutation generated so far.

Need to keep track of it.

/lprint soFar + all permutations of remaining string
void recPermute(String soFar, String remaining)

The problem asked for a printPermute with a different signature: we need a
wrapper

//print all permutations of s
void printPerm (String s) {
recPermute(*”, s);

}

Why use wrappers? the user does not need to know the internals of the
implementation (In this case, that it is recursive).




Permutations

/lprints soFar+all permutations of remaining
void recPermute(String soFar, String remaining) {

//base case
if (remaining.length() == 0)
System.out.printin(soFar);
else {
for (int i=0; i< remaining.length(); i++) {
String nextSoFar = soFar + remaining(i];
String nextRemaining = remaining.substring(0,i) + remaining.substring(i+1);
recPermute(nextSoFar, nextRemaining)




Permutations

- The tree of recursive calls for recPermute(“”, “abc”)




Subsets

« Enumerate all subsets of a given string

- Example: subsets of “abc” are a, b, c, ab, ac, bc, abc
« Order does not matter: “ab” is the same as “ba”

« Recursive structure
chose one element from input
can either include it in current subset or not
recursively form subsets including it
recursively form subsets excluding it
make sure to generate each set once
base case?




Subsets

void recSubsets(String soFar, String remaining) {

if (remaining.length()==0)
System.out.println(soFar);

else {
//ladd to subset, remove from rest, recurse
recSubsets(soFar+remaining[0], remaining.substring(1);
//don’t add to subset, remove from rest, recurse
recSubsets(soFar, remaining.substring(1);

void subsets(String s) {
recSubsets(*”, s);

)




Subsets

« The tree of recursive calls for recSubsets(*”, “abcd”)




