
Computer Science 210:
Data Structures

Object Oriented (OO) concepts

Summary

• OO concepts

• inheritance

• polymorphism

• this

• exceptions

• interfaces

Inheritance

• Inheritance is the capability of a class to use the properties and methods of another class while
adding its own functionality.

• It’s a mechanism for sharing/reusing code
• captures similarities between classes

• A sub-class inherits all public and protected members of its parent

Bike

TandemBike

RoadBike

MountainBike

base-class/super-class

sub-classes

Example
public class Bicycle {

 public int gear;
 public int speed;

 public Bicycle(int startSpeed, int startGear) {..}
 public void setGear(int newValue) {..}

 public void applyBrake(int decrement) {..}

 public void speedUp(int increment) {..}

}

public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight, int startSpeed, int startGear) {
 super(startSpeed, startGear);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method

 public void setHeight(int newValue) {...}

}

Inheritance in Java

• Object is the highest superclass (ie. root class) of Java
• all other classes are subclasses (children or descendants) of Object

• Object class defined defined in the java.lang package; includes methods such as:
• hashCode()
• toString()
• getClass()

• when your class does not extend any specific class, it extends Object by default

Inheritance

• Using inheritance
• When you want to create a new class and there is already a class that includes some of the code that

you want, you can derive your new class from the existing class.
• In doing this, you can reuse the fields and methods of the existing class without having to write (and

debug!) them yourself.

• Terminology

• A class that is derived from another class is called a subclass (also a derived class, extended class, or
child class).

• The class from which the subclass is derived is called a superclass (also a base class or a parent
class).

• Excepting Object, which has no superclass, every class has one and only one direct superclass
(single inheritance). In the absence of any other explicit superclass, every class is implicitly a
subclass of Object.

• Classes can be derived from classes that are derived from classes that are derived from classes, and
so on, and ultimately derived from the topmost class, Object. Such a class is said to be descended
from all the classes in the inheritance chain stretching back to Object.

• The inherited fields and method can be used directly

• You can declare new fields in the subclass that are not in the superclass

• You can declare new methods in the subclass that are not in the superclass

• You can override a method
• write a new method in the subclass that has the same signature as the one in the superclass
• you can invoke superclass method using keyword super

• You can write a subclass constructor
• invokes the constructor of the superclass by using super

What You Can Do in a Subclass

Calling super in a constructor
public MountainBike(int startHeight, int startSpeed, int startGear) {

 //call superclass constructor to create a Bike

 super(startCadence, startSpeed, startGear);

 seatHeight = startHeight;
 }

Calling super in an overridden method
public class Superclass {

 public void printMethod() {
 System.out.println("Printed in Superclass.");
 }
}
public class Subclass extends Superclass {

 public void printMethod() { //overrides printMethod in Superclass
 super.printMethod();
 System.out.println("Printed in Subclass");
 }

 public static void main(String[] args) {

 Subclass s = new Subclass();
 s.printMethod();

 }
}

this

• within a method this refers to the current object
• Used when a field is shadowed by a method or constructor parameter.

public class Point {
public int x = 0;
public int y = 0;

//constructor
public Point(int a, int b) {

x = a;
y = b;

}
}

• but it could have been written like this:
public class Point {

public int x = 0;
public int y = 0;

//constructor
public Point(int x, int y) {

this.x = x;
this.y = y;

}
}

this
• Using this with a Constructor

• From within a constructor, you can use this keyword to call another constructor in the same class
(doing so is called an explicit constructor invocation)

public class Rectangle {

 private int x, y;

 private int width, height;

 public Rectangle() {

 this(0, 0, 0, 0);

 }

 public Rectangle(int width, int height) {

 this(0, 0, width, height);

 }

 public Rectangle(int x, int y, int width, int height) {

 this.x = x;

 this.y = y;

 this.width = width;

 this.height = height;

 }

 ...

• }

Casting objects

Bike

TandemBike

RoadBike

MountainBike

• a MountainBike is a Bike
• a MountainBike is also an Object
• a Bike is not (necessarily) a MountainBike

• In Java: A variable of type T can be of type {T or any subclass of T}
• Example

Object bike;
//bike is allowed to be any subclass of Object

bike = new MountainBike();

• this is called casting: changing the type of an object

• We’ll use this by defining data structures that work generically with Objects; when we instantiate the data
structure, we can fill in any type of objects.

• Implicit casting in an inheritance hierarchy: a subclass can be used in place of a superclass

Casting examples
Bike b;
MountainBike mb;

mb = new MountainBike(..);

//implicit casting of a MountainBike to a Bike

b = mb;

class Person {

 //any person has a bike
Bike b;

 void Person(Bike b) {
this.b = b;

}

...

MountainBike mb = new MountainBike();
Person p = new Person(mb);

a person that owns a bike

a mountainbike is a bike

Interfaces
• An interface is a collection of method signatures (with no bodies)
• similar to a class

public interface OperateCar {

 // method signatures
 int turn(Direction direction, double radius,);
 int changeLanes(Direction direction, double startSpeed, double endSpeed);
 int signalTurn(Direction direction, boolean signalOn);

}

• When a class implements an interface it must implement all methods in that interface
public class OperateBMW760i implements OperateCar {

 int signalTurn(Direction direction, boolean signalOn) {
 //code to turn BMW's LEFT turn indicator lights on
 //code to turn BMW's LEFT turn indicator lights off
 //code to turn BMW's RIGHT turn indicator lights on
 //code to turn BMW's RIGHT turn indicator lights off
 }

 // other members, as needed

}

Interfaces

• Interfaces are used to describe the functionality of a software in an abstract way
(since methods have no bodies)

• Advantage:

• the implementation can change while interface remains the same

• multiple implementations

• E.g., a digital image processing library writes its classes to implement an interface,
and publishes its interface (API-application programming interface)

• the implementation of the methods is usually not disclosed

• moreover, it can change

• a graphics package may decide to use this library

• only needs to know the API

• Interfaces in Java

• a class can inherit from a SINGLE class

• a class can implement many interfaces

Object-Oriented Design

• In an object-oriented language you model/design the world using classes.

• To create the world you instantiate classes thus creating objects. Objects respond to events and this
determines how your world behaves.

• Each class models one part of the world.
• Usually in a project there is one class that creates the world---it creates the objects and starts the

initial events (e.g. timer events); after that the world evolves.

• You model and create your project’s world. Your design goals are:
• Robustness

• your world is capable of handling unexpected inputs without crashing
• your world recovers gracefully from errors

• Adaptability
• your world can be changed/adapted to new requirements

• Reusability
• your world is general/simple enough so that it can be re-used

• Code sharing is good.
• avoids re-inventing the wheel
• reliable (code is debugged many times)

Design Principles

To achieve the design goals, you follow a couple of principles:

• Abstraction
• distill a complicated system down to its most fundamental parts and describe it simply

• Encapsulation
• different components should NOT reveal internal details of their implementation

• e.g. data of an object is private (not public)
• one should be able to use a class by reading its interface

• interface of a class: the set of methods it supports
• e.g. read Java online docs and use the class; no need to know implementation

• Modularity
• divide the code into separate functional units

