Computer Science 210:
Data Structures

Object Oriented (OO) concepts




Summary

« OO concepts
inheritance
polymorphism
this
exceptions

interfaces




Inheritance

» Inheritance is the capability of a class to use the properties and methods of another class while
adding its own functionality.

e It’s a mechanism for sharing/reusing code
e captures similarities between classes

base-class/super-class

d

MountainBike TandemBike

sub-classes

RoadBike

e A sub-class inherits all public and protected members of its parent




Example

public class Bicycle {

public int gear;
public int speed;

public Bicycle(int startSpeed, int startGear) {..}
public void setGear(int newValue) {..}

public void applyBrake(int decrement) {..}

public void speedUp(int increment) {..}

public class MountainBike extends Bicycle {

// the MountainBike subclass adds one field
public int seatHeight;

// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startSpeed, int startGear) {
super (startSpeed, startGear);
seatHeight = startHeight;

}

// the MountainBike subclass adds one method

public void setHeight(int newValue) {...}




Inheritance in Java

Object is the highest superclass (ie. root class) of Java
» all other classes are subclasses (children or descendants) of Object
Object class defined defined in the java.lang package; includes methods such as:

e hashCode()
* toString() <

e getClass()
when your class does not extend any specific class, it extends Object by default

[

Dhject\

All Classes in the Java Platform are Descendants of Object




Inheritance

e Using inheritance
* When you want to create a new class and there is already a class that includes some of the code that
you want, you can derive your new class from the existing class.
In doing this, you can reuse the fields and methods of the existing class without having to write (and
debug!) them yourself.

e Terminology

A class that i1s derived from another class is called a subclass (also a derived class, extended class, or
child class).

The class from which the subclass is derived is called a superclass (also a base class or a parent
class).

Excepting object, which has no superclass, every class has one and only one direct superclass
(single inheritance). In the absence of any other explicit superclass, every class is implicitly a
subclass of object.

Classes can be derived from classes that are derived from classes that are derived from classes, and
so on, and ultimately derived from the topmost class, object. Such a class is said to be descended
from all the classes in the inheritance chain stretching back to object.




What You Can Do in a Subclass

The inherited fields and method can be used directly
You can declare new fields in the subclass that are not in the superclass
You can declare new methods in the subclass that are not in the superclass
You can override a method
e write a new method in the subclass that has the same signature as the one in the superclass

* you can invoke superclass method using keyword super

You can write a subclass constructor
* invokes the constructor of the superclass by using super




Calling super in a constructor

public MountainBike(int startHeight, int startSpeed, int startGear)

//call superclass constructor to create a Bike

super (startCadence, startSpeed, startGear);

seatHeight = startHeight;

Calling super in an overridden method

public class Superclass {

public void printMethod() {
System.out.println("Printed in Superclass.");

}
}

public class Subclass extends Superclass {

public void printMethod() { //overrides printMethod in Superclass
super.printMethod();
System.out.println("Printed in Subclass");

}

public static void main(String[] args) {
Subclass s = new Subclass();
s.printMethod();




this

within a method this refers to the current object
Used when a field is shadowed by a method or constructor parameter.

public class Point {
public int x = 0;
public int y = 0;

//constructor

public Point(int a, int b) {
X = a;
y = b;

}

e but it could have been written like this:

public class Point {
public int x = 0;
public int y = 0;

//constructor

public Point(int x, int y) {
this.x = Xx;
this.y = y;



this

e Using this with a Constructor

e From within a constructor, you can use this keyword to call another constructor in the same class
(doing so is called an explicit constructor invocation)

public class Rectangle {
private int x, y;

private int width, height;

public Rectangle() {
this(0, 0, 0, 0);

}

public Rectangle(int width, int height) {
this (0, 0, width, height);

}

public Rectangle(int x, int y, int width, int height) ({
this.x = Xx;
this.y = y;
this.width = width;
this.height = height;




Casting objects

a MountainBike i1s a Bike

a MountainBike is also an Object
a Bike is not (necessarily) a MountainBike T

MountainBike TandemBike

RoadBike

In Java: A variable of type T can be of type {T or any subclass of T}
Example

Object bike;

//bike is allowed to be any subclass of Object

bike = new MountainBike();
this is called casting: changing the type of an object

We’ll use this by defining data structures that work generically with Objects; when we instantiate the data
structure, we can fill in any type of objects.

Implicit casting in an inheritance hierarchy: a subclass can be used in place of a superclass




Casting examples

Bike b;
MountainBike mb;

mb = new MountainBike(..);

//implicit casting of a MountainBike to a Bike
b = mb;

class Person {
//any person has a bike
Bike b;

void Person(Bike b) {
this.b = b; € a person that owns a bike

MountainBike mb = new MountainBike();

Person p = new Person(mb); < a mountainbike is a bike




Interfaces

An interface is a collection of method signatures (with no bodies)
similar to a class

public interface OperateCar {

// method signatures

int turn(Direction direction, double radius,);

int changeLanes(Direction direction, double startSpeed, double endSpeed);
int signalTurn(Direction direction, boolean signalOn);

When a class implements an interface it must implement all methods in that interface

public class OperateBMW760i implements OperateCar {

int signalTurn(Direction direction, boolean signalOn) {
//code to turn BMW's LEFT turn indicator lights on
//code to turn BMW's LEFT turn indicator lights off
//code to turn BMW's RIGHT turn indicator lights on
//code to turn BMW's RIGHT turn indicator lights off

// other members, as needed




Interfaces

* Interfaces are used to describe the functionality of a software in an abstract way
(since methods have no bodies)
- Advantage:
+ the implementation can change while interface remains the same

+ multiple implementations

- E.g., a digital image processing library writes its classes to implement an interface,
and publishes its interface (APIl-application programming interface)

+ the implementation of the methods is usually not disclosed
* moreover, it can change
+ agraphics package may decide to use this library
+ only needs to know the API
- Interfaces in Java
+ aclass can inherit from a SINGLE class

+ aclass can implement many interfaces




Object-Oriented Design

In an object-oriented language you model/design the world using classes.

To create the world you instantiate classes thus creating objects. Objects respond to events and this
determines how your world behaves.

* Each class models one part of the world.

e Usually in a project there is one class that creates the world---it creates the objects and starts the
initial events (e.g. timer events); after that the world evolves.

You model and create your project’s world. Your design goals are:
e Robustness
e your world is capable of handling unexpected inputs without crashing
e your world recovers gracefully from errors
e Adaptability
e your world can be changed/adapted to new requirements
e Reusability

e your world is general/simple enough so that it can be re-used

Code sharing is good.
e avoids re-inventing the wheel
* reliable (code is debugged many times)



Design Principles

To achieve the design goals, you follow a couple of principles:

e Abstraction
e distill a complicated system down to its most fundamental parts and describe it simply

e Encapsulation
e different components should NOT reveal internal details of their implementation
e e.g.data of an object is private (not public)
* one should be able to use a class by reading its interface
» interface of a class: the set of methods it supports
e e.g.read Java online docs and use the class; no need to know implementation

e Modularity
e divide the code into separate functional units




