csci 210: Data Structures

Iterators

e An iterator abstracts the process of scanning through a collection of elements one at a time

e An iterator is a class with the following interface

e boolean hasNext()

e return true if there are elements left in the iterator

e Type next()

¢ return the next element in the iterator

e Java.util Iterator interface

* All classes that implement collections of elements (Vectors, Lists, ArrayList, etc) have
1terators

e they have a method called “iterator()” which returns an iterator of the elements in the
collection

Example
ArrayList<Type> a;
//Vector<Type> a;
//Stack<Type> a;
//LinkedList<Type> a;

Iterator<Type> it = a.iterator();
while (it.hasNext()) {

Type e = it.next();

//process e

//...

}
//or

for (Iterator<Type> it = a.iterator(); it.hasNext();) {
Type e = it.next();
//oo.

e aJava specific for loop that uses iterators (under the hood)

Vector<Type> v;

for (Type x: v) {
//x is the current element in v and the loop iterates
//through all elements of v
System.out.print(“the current element is “ + Xx);

e Why use iterators?
* They lead to more generic, high level code

» They hide the details of the specific collection (linked list or array, or whatever else)

* You can change the data structure, and the loop remains the same

List iterators

* The preferred way to access a Java.util.LinkedList is through an iterator

dA5tideXUI (uUDlect O)
Returns the index in this list of the last occurrence of the specified element, or -1 if the list does not contain this elem

ListIterator|]ljigtIterator(int index)
Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list.

Object | pemove (int index)

listlterator

public ListIterator listIterator({int index)

Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list. Obeys the general contract of

List.listIterator{int}.

The list-iterator is fail-fast: if the list is structurally modified at any time after the Iterator is created, in any way except through the list-iterator's
OWN remove Or add methods, the list-iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification,
the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.

Specified by:

listIterator in interface List

Specified by:

listIterator in class AbstractSeguentiallist

Parameters:
index - index of first element to be returmned from the list-iterator (by a call to next).
Returns:
a ListIterator of the elements in this list (in proper sequence), starting at the specified position in the list.
Throws:
IndexOutOfBoundsException - if index is out of range (index < 0 index > size()).
See Also:

List.listIterator{int)

e a Listlterator includes

| Method Summary

vold

add (Object o)
Inserts the specified element into the list (optional operation).

hasNext()
Remms true if this list iterator has more e¢lements when traversing the list in the forward direction.

hasPrevious()
Remms true if this list iterator has more elements when traversing the list in the reverse direction.

next()
Returns the next element in the list.

nextIndex()
Retumns the index of the element that would be returned by a subsequent call to next.

previous()
Retumns the previous element in the list.

previousIndex()
Rewmms the index of the element that would be returned by a subsequent call to previous.

remove()
Removes from the list the last element that was returned by next or previous (optional operation).

set (Object o)
Replaces the last element returned by next Or previous with the specified element (optional operation).

