Computer Science 210:
Data Structures

Intro to Java Graphics

Summary

« Today
« GUIs in Java using Swing
* in-class: a Scribbler program

- READING:
+ browse Java online Docs, Swing tutorials

GUIs in Java

- We’'ll be using Swing
« toolkit for designing GUls
« implemented on top of AWT (another toolkit)
 provides uniform look across platforms, customized looks, etc

+ Swing provides definition of standard classes used in GUIs
* panels, labels, frames, buttons, scroll bars, text labels etc

- all classes in Swing start with J
e JButton, JComboBox,JDesktopIcon,JSeparator,JSlider,JScrollPane,JLabel, JProgressBar, JTable etc

+ called components

GUIs in Java

« Components

+ JButton, JComboBox,JDesktoplcon,JSeparator,JSlider,JScrollPane,JLabel,
JProgressBar, JTable etc

- Components are organized in a hierarchy

- at the top level, a component that handles windows
e top-level containers: JFrame, JDialog, JApplet
e we'll use JFrame

+ the window may contain panels that contain buttons and labels and so on

« components that are not top-level containers must be attached to some other
component

Example

import javax.swing.*;
import java.awt.¥*;

//a class that handles a window
public class MyClass extends JFrame {
// instance variables
public MyClass() {
super("My window");
setSize (400, 400);

//exit when closing the window
setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

setVisible(true);

Handling the mouse

« Mouse events are sent to the objects that “registered” to “listen” to the mouse
+ timer events are sent to objects that registered to listen to the timer,
- etc

« The events are sent by calling a set of methods with predefined names

* To handle the mouse

1. the class must implement one or both of these interfaces
+ MouseMotionListener
« MouselListener

2. the object must register itself as a mouse “listener”
+ the mouse events will be sent to all objects that are registered as “listeners”
® mouse motion events --> register as a mouse motion listener, etc
e timer events --> register as a time listener
e for each type of event, there exists a corresponding method to register as a listener

« Note: if the registration is in the constructor of the class, then every instance of the
class will “listen” to the mouse

import javax.swing.¥*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

//a class that handles the mouse
public class MyclassWithMouse extends JFrame implements MouseInputListener {

public MyclassWithMouse() {
super ("My window");

setSize (400, 400);

//exit on close
setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

setVisible(true);

addMouseMotionListener(this); <€

addMouseListener (this);

mousePressed(MouseEvent e) {}

mouseDragged (MouseEvent e) {}

mouseReleased(MouseEvent e) {}
mouseClicked(MouseEvent e) {}

mouseEntered (MouseEvent e) {}

mouseExited(MouseEvent e) {}

mouseMoved (MouseEvent e) {}

Drawing in a window

- To draw you need a canvas
Graphics g ;

« Need to grab the canvas of the JFrame
Graphics g = this.getGraphics();

« Methods supported by class Graphics
drawLine(Point pl, Point p2)
drawImage(..)
drawOval..
drawPolygon. .
drawRect..
getColor, setColor..
getFont, setFont..

-+ Java coordinate system:
» (0,0) upper left corner

In-class work

+ Test mouse functionality
« write code in the various mouse methods and check when they get called

« Develop a program that lets the user scribble on the window
record the mouse clicks

when pressing the mouse you want to start drawing; if you keep the mouse pressed
and drag it around, you want the movement to be shown on screen, until the mouse
is released.

in addition to the skeleton above, you need some instance variables to record
position
® you can use integers, or class Point provided by Java

The painting mechanism in Swing

« Problem: render/paint the right things at the right time

- Swing: any component has (inherits) a method called paint
e public void paint(Graphics g)
« the component should place the rendering code inside paint()
+ paint() is invoked every time it’s time to paint

« A call to paint() can be triggered:
* by the system

e the component is made visible
e the component is resized

e the component needs to be repaired (i.e. some other window that was previously obscuring this
component has moved away)

by the the application

e when the program decides it needs to re-paint the component

« When the system invokes paint() on a component, it pre-configures a Graphics object
with the current Graphics context and passes it as argument to paint()

The painting mechanism in Swing

Programs should place the rendering code inside paint()
« override paint()

Programs should avoid placing rendering code at any point where it might be invoked
outside paint

« Why? Because such code may be invoked at times when it is not appropriate to
paint -- for instance, before the component is visible or has access to a valid
Graphics object.

Programs should NOT invoke paint() direcily.
Instead, use

* public void repaint()

In fact, Swing components should override

e public void paintComponent (Graphics g)

Paint mechanism is complicated
We'll keep GUIs simple
« GUIs are a tool for the class, not the focus

- Here is an example of a paint() method which renders a filled circle in the bounds
of a component:

public void paint(Graphics g) {
/Iclear the screen
super.paint();

// Dynamically calculate size information of the component
Dimension size = getSize();

// diameter

int d = Math.min(size.width, size.height);
int x = (size.width - d)/2;

inty = (size.height - d)/2;

// draw circle (color already set to foreground)
g.fillOval(x, y, d, d);

g.setColor(Color.black);

g.drawOval(x, y, d, d);

Class work

 re-write Scribbler
« place all render code in paint()
- call repaint() when appropriate

