
Computer Science 210: 
Data Structures

Intro to Java Graphics



Summary

• Today 
• GUIs in Java using Swing
• in-class: a Scribbler program

• READING:
• browse Java online Docs, Swing tutorials



GUIs in Java

• Weʼll be using Swing
• toolkit for designing GUIs
• implemented on top of AWT (another toolkit)
• provides uniform look across platforms, customized looks, etc

• Swing provides definition of standard classes used in GUIs
• panels, labels, frames, buttons, scroll bars, text labels etc
• all classes in Swing start with J

• JButton, JComboBox,JDesktopIcon,JSeparator,JSlider,JScrollPane,JLabel, JProgressBar, JTable etc

• called components



GUIs in Java

• Components
• JButton, JComboBox,JDesktopIcon,JSeparator,JSlider,JScrollPane,JLabel, 

JProgressBar, JTable etc

• Components are organized in a hierarchy

• at the top level, a component that handles windows
• top-level containers: JFrame, JDialog, JApplet
• we’ll use JFrame

• the window may contain panels that contain buttons and labels and so on 

• components that are not top-level containers  must be attached to some other 
component



Example

import javax.swing.*;
import java.awt.*;

//a class that handles a window
public class MyClass extends JFrame  {

    // instance variables 
    ....
   
    public MyClass() {
        super("My window");
        setSize(400, 400);

    //exit when closing the window
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        setVisible(true);
    }
    
};



Handling the mouse

• Mouse events are sent to the objects that “registered” to  “listen” to the mouse
• timer events are sent to objects that registered to listen to the timer, 
• etc

• The events  are sent by calling a set of methods with predefined names

• To handle the mouse

1.  the class must implement one or both of these interfaces
• MouseMotionListener
• MouseListener

2.  the object  must register itself as a mouse “listener”
• the mouse events will be sent to all objects that are registered as “listeners”

• mouse motion events --> register as a mouse motion listener, etc 
• timer events --> register as a time listener 
• for each type of event, there exists a corresponding  method to register as a listener 

• Note:   if the registration is in the constructor of the class, then every instance of the 
class will “listen” to the mouse



import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

//a class that handles the mouse
public class MyclassWithMouse extends JFrame implements MouseInputListener {
   
    public MyclassWithMouse() {
        super("My window");
        setSize(400, 400);

    //exit on close 
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        setVisible(true);
        
    addMouseMotionListener(this);
    addMouseListener(this);
    }
    
    public void mousePressed(MouseEvent e) {}
    
    public void mouseDragged(MouseEvent e) {}
    
    public void mouseReleased(MouseEvent e) {}
   
    public void mouseClicked(MouseEvent e) {}
   
    public void mouseEntered(MouseEvent e) {}
   
    public void mouseExited(MouseEvent e) {}
   
    public void mouseMoved(MouseEvent e) {}
   
};



Drawing in a window

• To draw you need a canvas 
Graphics  g ;

• Need to grab the canvas of the JFrame
Graphics g = this.getGraphics();

• Methods supported by class Graphics
• drawLine(Point p1, Point p2)

• drawImage(..)

• drawOval..

• drawPolygon..

• drawRect..

• getColor, setColor..

• getFont, setFont..

• Java coordinate system: 
• (0,0) upper left corner



In-class work

• Test mouse functionality 
•  write code in the various mouse methods and check when they get called

• Develop a program that lets the user scribble on the window
• record the mouse clicks
• when pressing the mouse you want to start drawing; if you keep the mouse pressed 

and drag  it around, you want the movement to be shown on screen, until the mouse 
is released. 

• in addition to the skeleton above, you need some instance variables to record 
position
• you can use integers, or class Point provided by Java 



The painting mechanism in Swing

• Problem: render/paint the right things at the right time

• Swing:  any component has (inherits) a method  called paint 
• public void paint(Graphics g)

• the component should  place the rendering code inside paint()
• paint() is invoked every time  itʼs time to paint

• A call to paint() can be triggered: 
• by the system

• the component is made visible
• the component is resized
• the component needs to be repaired (i.e. some other window that was previously obscuring this 

component has moved away)

• by the the application
• when the program decides it needs to re-paint the component

• When the system invokes paint() on a component,  it pre-configures a Graphics object 
with the current Graphics context and passes it as argument to paint()



The painting mechanism in Swing

• Programs should  place the rendering code inside paint()
• override paint()

• Programs should avoid placing rendering code at any point where it might be invoked 
outside  paint 
• Why? Because such code may be invoked at times when it is not appropriate to 

paint -- for instance, before the component is visible or has access to a valid 
Graphics object. 

• Programs should NOT invoke paint() directly.
• Instead,  use 

•     public void repaint() 

• In fact,  Swing components should override 
• public void paintComponent(Graphics g)

• Paint mechanism is complicated
• Weʼll keep GUIs simple

• GUIs are a tool for the class, not the focus



• Here is an example of a paint() method which renders a filled circle in the bounds 
of a component:    

public void paint(Graphics g) {
//clear the screen
super.paint(); 

     // Dynamically calculate size information of the component
     Dimension size = getSize();

     
     // diameter

           int d = Math.min(size.width, size.height); 
           int x = (size.width - d)/2;
           int y = (size.height - d)/2;

          // draw circle (color already set to foreground)
          g.fillOval(x, y, d, d);
          g.setColor(Color.black);
          g.drawOval(x, y, d, d);
    }



Class work

• re-write Scribbler
• place all render code in paint()
• call repaint() when appropriate


