Final Review

1. REVIEW TOPICS

—Java basics
—Recursion
—divide-and-conquer and backtracking
—Linked lists
—Functionality. WHY lists? difference with vectors/arrays
—analysis for insert, delete, search
—when/why doubly-linked lists; circular lists
—Stacks and queues
—operations and functionality
—implementation with vectors and lists
—searching with stacks and queues: breadth-first search and depth-first search
—The general skeleton of search using a stack or a queue to keep track of the states
to explore
—Trees and binary search trees
—definition and functionality
—computing height, level, size
—complete binary tree; number of nodes at each level, height
—traversals: BFS, DFS, in-order, post-order, pre-order
—operations: search, insert, delete, min, max, successor, predecessor
—Priority queues and the binary heap
—operations supported by a priority queueu, and difference to a DICTIONARY
—general idea of insert and extract-min and analysis
—Sorting
—general idea of approaches (insertion sort, selection sort, bubble sort, [merge
sort], sort with a priority queue)

—Maps and hashing
—operations supported by a map
—comparison map, dictionary
—hashing and collisions with chaining, open addressing
—load factor and performance
—what is expected of a good hash function
—Graphs
—terminology and basic properties
—traversal: DFS

csci210: Data Structures Fall 2008



2 . Final Review

2. COURSE OUTCOMES

After this class you should be comfortable with the fundamental computer science

algorithms and data structures, be able to use them to model and solve a problem,

discuss their efficiency, be able to go from concepts to details, from theory to

practice and implement a problem from scratch, and be able to debug your code.
More precisely,

—Know the fundamental data structures (arrays, vectors, lists, stacks, queues,
trees, binary search trees, heaps, maps, hash tables) and basic algorithmic tech-
niques (recursion; divide-and-conquer; backtracking, breadth- and depth-first
search).

—Analyse the asymptotic performance of fundamental data structures and discuss
which structure is better in what circumstances and what are the trade-offs.

—DBe able to use the structures as black-boxes to solve a problem at a high level of
abstraction.

—Be able to implement the details of a data structure.

—Be familiar with the general ideas for sorting (insertion sort, selection sort, bubble
sort, merge-sort, heap sort)

—Know the major ways to implement searching (linear search, binary search, bi-
nary search trees, hashing)

—DBe able to implement your code in Java, search the Java doc files, debug and get
it to work.

csci210: Data Structures Fall 2008.



