
csci 210: Data Structures

Graph Traversals
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Depth-first search (DFS)
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 G can be directed or undirected

 DFS(v)
• mark v visited

• for all adjacent edges (v,w) of v do 

• if w is not visited
– parent(w) = v
– (v,w) is a discovery (tree) edge
– DFS(w) 

• else (v,w) is a non-discovery (non-tree) edge



DFS
 Assume G is undirected (similar properties hold when G is directed).  

 DFS(v) visits all vertices in the connected component of v 

 The discovery edges form a tree: the DFS-tree of v 
• justification: never visit a vertex again==> no cycles 

• we can keep track of the DFS tree by storing, for each vertex w, its parent 

 The non-discovery (non-tree) edges  always lead to a parent 

 If G is given as an adjacency-list of edges, then DFS(v) takes  O(|V|+|E|) time. 
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DFS
 Putting it all together: 

 Proposition: Let G=(V,E) be an undirected graph represented by its adjacency-list. A 
DFS traversal of G can be performed in O(|V|+|E|) time and can be used to solve the 
following problems: 

• testing whether G is connected

• computing the connected components (CC) of G 

• computing a spanning tree of the CC of v

• computing a path between 2 vertices, if one exists 

• computing a cycle, or reporting that there are no cycles in G 

4



Breadth-first search (BFS)
 BFS(v) 
 Main idea: 

• start at v and visit first all vertices at distance =1

• followed by all vertices at distance=2

• followed by all vertices at distance=3

• ...
 BFS corresponds to computing the shortest path (in terms of number of edges) from v 

to all other vertices 
• we’ll justify this later 

 To perform BFS we think about coloring each vertex 
• WHITE before we start 

• GRAY after we visit a vertex but before we visited all its adjacent vertices 

• BLACK after we visit a vertex and all its adjacent vertices 
 We use a queue to store all GRAY vertices---these are the vertices we have seen 

but we are not done with 
 We remember from which vertex a given vertex w is colored GRAY ---- this is the 

vertex tat discovered w, or the parent of w
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BFS
 BFSinitialize: 

• for each v in V 

• color(v) = WHITE
• d[v] = infinity 
• parent(v) = NULL

 BFS(v)
• color(v) = GRAY 

• d[v] = 0

• create an empty queue Q 

• Q.enqueue(v)

• while Q not empty 

• Q.dequeue(u) 
• for all adjacent edges (u,w) of e in E do 

– if color(w) = WHITE 
» color(w) = GRAY 
» d[w] = d[u] + 1
» parent(w) = u
» Q.enqueue(w) 

– color(u) = BLACK
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BFS
 We can classify edges as 

• discovery (tree) edges: edges used to discover new vertices

• non-discovery (non-tree) edges: lead to already visited vertices
 The distance d(u) corresponds to its “level” 
 For each vertex u, d(u) represents the shortest path from v to u 

• justification: by contradiction. If d [u]=k, assume there exists a shorter path from v to u....

 Assume G is undirected (similar properties hold when G is directed). 
• connected components are defined undirected graphs (note: on directed graphs: strong 

connectivity)
 As for DFS, the discovery edges form a tree, the BFS-tree
 BFS(v) visits all vertices in the connected component of v
 If (u,w) is a non-tree edges, then d(u) and d(w) differ by at most 1.

 If G is given by its adjacency-list, BFS(v) takes O(|V|+|E|) time. 
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BFS
 Putting it all together: 

 Proposition: Let G=(V,E) be an undirected graph represented by its adjacency-list. A 
BFS traversal of G can be performed in O(|V|+|E|) time and can be used to solve the 
following problems: 

• testing whether G is connected

• computing the connected components (CC) of G 

• computing a spanning tree of the CC of v 

• computing a path between 2 vertices, if one exists 

• computing a cycle, or reporting that there are no cycles in G 

• computing the shortest paths from v to all vertices in the CC ov v 
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Graphs
 Reading: textbook chapter 13 --- only 13.1-13.3

• 13.1: a good general introduction to graphs

• 13.2 data structures for graphs

• 13.3: BFS and DFS

 If you want to know more, take Algorithms or AI 
• offered every fall 
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Summary
 Fundamental data structures

• vectors, lists, queues, stacks, trees, maps, priority queues
 Abstract data structures (ADT) 

• the general interface

• Queue ADT, Stack ADT, Map ADT, Graph ADT, tree ADT
 Implementations of standard ADT

• use arrays, lists,  trees, hashing 

 Trees
• binary search trees

 Priority queues
• heap 

 Graphs 
• basic concepts 

• traversals

 Efficiency 
10



Logistics
 Tomorrow: final project demos

 Final exam:  Wednesday May 13th 2-5pm
• in-class exam 

• meet in the classroom (Seales 126) 

• written part + programming part 

 Office hours: 
• tentative: pending scheduling honors presentations. If conflict, I will email new times

• Monday May 11: 2-4pm 

• Tuesday May 11: 2-4pm 
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