
csci 210: Data Structures
More Recursion

Summary

• Topics: more recursion
• Subset sum: finding if a subset of an array that sum up to a given target

• Permute: finding all permutations of a given string

• Subset: finding all subsets of a given string

Thinking recursively

• Finding the recursive structure of the problem is the hard part

• Common patterns
• divide in half, solve one half

• divide in sub-problems, solve each sub-problem recursively, “merge”

• solve one or several problems of size n-1

• process first element, recurse on remaining problem

• Recursion
• functional: function computes and returns result.

• Example: computing the sum of n numbers; isPalindrome; binary search.

• procedural: no return result (function returns void). The task is accomplished during the recursive calls.

• Example: Sierpinski fractals.

• Recursion
• exhaustive

• non-exhaustive: stops early

Subset Sum

• Given an array of numbers and a target value, find whether there exists a subset of those numbers
that sum up to the target value.

boolean subsetSum (int[] a, int target)

• Example:

• Recursive structure:
• consider the next element in the array

• try making a sum WITH this element

• try making a sum WITHOUT this element

• if neither is possible, return false

Subset Sum

• So: consider the next element, it is either in the solution, or not. Try both ways. If both fail, return
false.

• Need to keep track of the partial sum so far. When starting a recursive call, need to know the sum of
the current subset. Also need to know the index of the next element to consider.

void recSubset(int[] a, int target, int i, int sumSoFar)

• The problem asked for a subsetSum function with the following signature:

boolean subsetSum (int[] a, int target)

• Need a wrapper:

boolean subsetSum (int[] a, int target) {
return recSubset(a, target, 0, o);

}

Subset Sum

//i is the index of the next element to consider
//sumSoFar is the sum of elements included in the solution so far.
boolean recSubset(int[] a, int target, int i, int sumSoFar) {

//basecases
//we got it
if (sumSoFar == target) return true;
//we reached the end and sum is not equal to target
if (i == a.length) return false;

//recursive case: try next element both in and out of the sum
boolean with = recSubset(a, target, i+1, sumSoFar + a[i]);
boolean without = recSubset(a, target, i+1, sumSoFar);
return (with || without);

}

Subset Sum

• The tree of recursive calls for recSubset([1, 2, 3, 4], target, 0, 0)

Subset Sum

• Variations
• Alternative strategy: at each step, chose one of the remaining element to be part of the subset

and recurse on the remaining part.

• How could you change the function so that it prints the elements of the subset that sum to target?
• store partial subsets in another array
• or print element at the end of recursive call

• How could you change the function to report not only if such a subset exists, but to count all such
subsets?

Permutations

• Write a function to print all permutations of a given string.
• Example: permute “abc” should print: abc, acb, bca, bac, cab, cba.

void printPerm(String s)

• Recursive structure:
• Chose a letter from the input, and make this the first letter of the output
• Recursively permute remaining input
• chose a, permute “bc”: should generate “a” + all permutations of “bc”
• chose all letters in turn to be first letters
• chose b, permute “ac”: should generate “b” + all permutations of “ac”
• chose c, permute “ab”: should generate “c” + all permutations of “ab”

• What is the base case?
• Can you make sure that each permutation is generated precisely once?

Permutations

• So: pick a letter, add it to the solution, recurse on remaining
• When starting a recursive call, we know the list of letters chosen so far; that is, we know the first part

of the permutation generated so far.
• Need to keep track of it.

//print soFar + all permutations of remaining
void recPermute(String soFar, String remaining)

• The problem asked for a printPermute with a different signature: we need a wrapper

//print all permutations of s
void printPerm (String s) {

recPermute(“”, s);
}

• Why use wrappers? the user does not need to know the internals of the implementation. In this case,
that it is recursive.

Permutations

void recPermute(String soFar, String remaining) {

//base case
if (remaining.length() == 0)

System.out.println(soFar);
else {

for (int i=0; i< remaining.length(); i++) {
String nextSoFar = soFar + remaining[i];
String nextRemaining = remaining.substring(0,i) + remaining.substring(i+1);
recPermute(nextSoFar, nextRemaining)

}
}

}

Permutations

• The tree of recursive calls for recPermute(“”, “abc”)

Subsets

• Enumerate all subsets of a given string
• Example: subsets of “abc” are a, b, c, ab, ac, bc, abc

• Order does not matter: “ab” is the same as “ba”

• Recursive structure
• chose one element from input

• can either include it in current subset or not

• recursively form subsets including it

• recursively form subsets excluding it

• make sure to generate each set once

• base case?

Subsets

void recSubsets(String soFar, String remaining) {
if (remaining.length()==0)

System.out.println(soFar);
else {

//add to subset, remove from rest, recurse
recSubsets(soFar+remaining[0], remaining.substring(1);
//donʼt add to subset, remove from rest, recurse
recSubsets(soFar, remaining.substring(1);

}
}

void subsets(String s) {
recSubsets(“”, s);

}

Subsets

• The tree of recursive calls for recSubsets(“”, “abcd”)

