
csci 210:  Data Structures
Recursion



Summary

• Topics
• recursion overview

• simple examples

• Sierpinski gasket

• counting blobs in a grid 

• Hanoi towers

• READING:
• GT textbook chapter 3.5



Recursion

• A method of defining a function in terms of its own definition 
• Example: the Fibonacci numbers 

• f (n) = f(n-1) + f(n-2) 

• f(0) = f(1) = 1

• In programming recursion is a method call to the same method. In other words, a recursive method is 
one that calls itself. 

• Why  write a method that calls itself? 
• Recursion is a good problem solving approach

• solve a problem by reducing the problem to smaller subproblems; this results in recursive calls. 

• Recursive algorithms are elegant, simple to understand and prove correct, easy to implement 
• But!  Recursive calls can result in a an infinite loop of calls

• recursion needs a base-case in order to stop 

• Recursion (repetitive structure) can be found in nature 
• shells, leaves

base case



Recursive algorithms

• To solve a probleme recursively
• break into smaller problems 

• solve sub-problems recursively 

• assemble sub-solutions

recursive-algorithm(input) {

//base-case 

if  (isSmallEnough(input)) 

compute the solution and return it 

else 

//recursive case

break input into simpler instances input1, input 2,...

solution1 = recursive-algorithm(input1)

solution2 = recursive-algorithm(input2)

...

figure out solution to this problem from solution1, solution2,...

return solution

}

Problem solving technique: Divide-and-Conquer



Example

• Write a function  that computes the sum of numbers from 1 to n  
int sum (int n) 

1. use a loop 

2. recursively 



Example

• Write a function  that computes the sum of numbers from 1 to n  
int sum (int n) 

1. use a loop 

2. recursively 

//with a loop
int sum (int n) {
  int s = 0; 

  for (int i=0; i<n; i++)
       s+= i; 

  return s; 
}

//recursively
int sum (int n) {
  int s; 

  if (n == 0) return 0; 
    //else 

    s = n + sum(n-1);
   return s; 

}

How does it work?



sum(10)

sum(9)

sum(8)

sum(1)

sum(0)

return 0

return 1+0

return 8 + 28

return 9 + 36

return 10 + 45



Recursion

• How it  works 
• Recursion is no different than a function call 

• The system keeps track of the sequence of method calls that have been started but not finished yet (active calls) 

• order matters

• Recursion pitfalls 
• miss base-case

• infinite recursion, stack overflow

• no convergence

• solve recursively a problem that is not simpler than the original one 



Perspective

• Recursion  leads to solutions that are
• compact 

• simple 

• easy-to-understand

• easy-to-prove-correct

• Recursion emphasizes thinking about a problem at a high level of abstraction

• Recursion has an overhead (keep track of all active frames). Modern compilers can often optimize the 
code and eliminate recursion.   

• First rule of code optimization: 
• Don’t optimize it..yet. 

• Unless you write super-duper optimized code, recursion is good

• Mastering recursion is essential to understanding computation. 



Class-work: Sierpinski gasket

• Fill in the code to create this pattern



• Problem: you have a 2-dimensional grid of cells, each of which may be filled or empty.  Filled cells 
that are connected form a “blob” (for lack of a better word). 

• Write a recursive method that returns the size of the blob containing a specified cell (i,j)

• Example
      0    1     2     3     4

0                        x     x

1                        x 

2     x    x

3     x    x    x            x

4     x    x                  x

• Solution ?
• essentially you need to check the current cell, its neighbors, the neighbors of its neighbors, and so on

• think RECURSIVELY

Blob check

BlobCount(0,3) = 3
BlobCount(0,4) = 3
BlobCount(3,4) = 1
BlobCount(4,0) = 7



Blob check

• when calling BlobCheck(i,j)
• (i,j) may be outside of grid

• (i,j) may be EMPTY 

• (i,j) may be FILLED

• When you write a recursive method, always start from the base case
• What are the base cases for counting the blob? 

• given a call to BlobCkeck(i,j): when is there no need for recursion, and the function can return the answer 
immediately ?

• Base cases
• (i,j) is outside grid 

• (i,j) is EMPTY



Blob check

• blobCheck(i,j):  if (i,j) is FILLED

• 1 (for the current cell) 

• + count its 8 neighbors 

//first check base cases

if (outsideGrid(i,j)) return 0; 

if (grid[i][j] != FILLED) return 0; 

blobc = 1

for (l = -1; l <= 1; l++) 

for (k = -1; k <= 1; k++)

//skip of middle cell

if (l==0 && k==0) continue;

//count neighbors that are FILLED

if (grid[i+l][j+k] == FILLED) blobc++; 

• Does not work: it does not count the neighbors of the neighbors, and their neighbors, and so on. 
• Instead of adding +1 for each neighbor that is filled, need to count its blob recursively. 

x x

x x
x



Blob check

• blobCheck(i,j):  if (i,j) is FILLED

• 1 (for the current cell) 

• + count blobs of its 8 neighbors 

//first check base cases

if (outsideGrid(i,j)) return 0; 

if (grid[i][j] != FILLED) return 0; 

blobc = 1

for (l = -1; l <= 1; l++)

for (k = -1; k <= 1; k++)

//skip of middle cell

if (l==0 && k==0) continue;

blobc  += blobCheck(i+k, j+l); 

• Example:    blobCheck(1,1) 
• blobCount(1,1) calls blobCount(0,2) 

• blobCount(0,2) calls blobCount(1,1)

• Does it work? 
• Problem: infinite recursion. Why? multiple counting of the same cell

x x

x x
x



Marking your steps

• Idea: once you count a cell, mark it so that it is not counted again by its neighbors.

x

x

blobCheck(1,1)

x

*

count it and mark it

+ blobCheck(0,0)
+ blobCheck(0,1)
+blobCheck(0,2)

...

blobc=1

then find counts of neighbors, recursively



Correctness

• blobCheck(i,j) works correctly if the cell (i,j) is not filled 
• if cell (i, j) is FILLED

• mark the cell 

• the blob of this cell is 1 + blobCheck of all neighbors 

• because the cell is marked, the neighbors will not see it as FILLED

• ==> a cell is counted only once 

• Why does this stop? 
• blobCheck(i,j) will generate recursive calls to neighbors

• recursive calls are generated only if the cell is FILLED

• when a cell is marked, it is NOT FILLED anymore,  so the size of the blob of filled cells is one smaller 

• ==> the blob when calling blobCheck(neighbor of i,j) is smaller that blobCheck(i,j)

• Note: after one call to blobCheck(i,j) the blob of (i,j) is all marked 
• need to do one pass and restore the grid 



Try it out!

 Download blobCheckSkeleton from class website
 Fill in method blobCount(i,j) 

17



Towers of Hanoi

• Consider the following puzzle 
• There are 3 pegs (posts)  a, b, c  and n disks of different sizes 

• Each disk has a hole in the middle  so that it can fit on any peg

• At the beginning of the game, all n disks are on peg a, arranged such that the largest is on the bottom, and on 
top sit the progressively smaller disks, forming a tower

• Goal: find a set of moves to bring all disks on peg c in the same order, that is, largest on bottom, smallest on 
top

• constraints

• the only allowed type of move is to grab one disk from the top of one peg and drop it on another peg  

• a larger disk can never lie above a smaller disk, at any time 

• The legend says that the world will end when a group of monks, somewhere in a temple, will finish 
this task with 64 golden disks on 3 diamond  pegs.  Not known when they started. 

a cb

...



Find the set of moves for n=3

a cb

a cb



Solving the problem for any n 

• Problem: move n disks from A to C using B 
• Think recursively.
• Can you express the problem in terms of a smaller problem? 

• Subproblem:  move n-1 disks from  X to Y using Z 



Solving the problem for any n 

• Problem: move n disks from A to C using B 
• Think recursively.
• Can you express the problem in terms of a smaller problem? 

• Subproblem:  move n-1 disks from X to Y using Z

• Recursive formulation of Towers of Hanoi : move n disks from A to C using B 
• move top n-1 disks from A to B 

• move bottom disks from A to C 

• move n-1 disks from B to C using A

• Correctness
• How would you go about proving that this is correct? 



Hanoi-skeleton.java

• Look over the skeleton of the Java program to solve the Towers of Hanoi
• It’s supposed to ask you for n and then display the set of moves 

• no graphics

• finn in the gaps in the method 
public void move(sourcePeg, storagePeg, destinationPeg)



Correctness

• Proving recursive solutions correct is done with mathematical induction
• Induction: a technique of proving that some statement is true for any n (natural number) 

• known from ancient times (the Greeks)

• Induction proof: 
• Base case: prove that the statement is true for some small value of n, usually n=1 

• The induction step: assume that the statement is true for all integers <=  n-1. Then prove that this implies that it 
is true for n.                                                         

• Exercise: try proving by induction that 1 + 2 + 3 + ..... + n = n (n+1)/2

• Proof sketch for Towers of Hanoi: 
• Base case: It works correctly for moving one disk. 

•  Assume it works correctly for moving n-1 disks.  Then we need to argue that it works correctly for moving n 
disks. 

• A recursive solution is similar to an inductive proof; just that instead of “inducting” from values 
smaller than n to n, we “reduce” from n to values smaller than n (think n = input size) 

• the base case is crucial:  mathematically, induction does not hold without it; when programming, the lack of a 
base-case causes an infinite recursion loop 



Analysis

• How close is the end of the world?  Let’s estimate running time. 

• The running time of recursive algorithms is estimated using recurrent functions.
• Let T(n) be the time to compute the sequence of moves to move n disks from one peg to another. 
• We have  

• T(n) = 2T(n-1) + 1, for any n > 1

• T(1) = 1  (the base case) 

• The recurrence solves to T(n) = O(2n)   [Csci 231]
• It can be shown by induction that T(n) = 2n -1  [Math 200, Csci 231]

• This means, the running time is exponential in n 
• slow... 

• Exercise: 
• 1GHz processor, n = 64 =>  264 x 10-9 = .... a log time; hundreds of years


