csci 210: Data Structures

Program Analysis

1

Summary

Summary

- analysis of algorithms
- asymptotic analysis
 - big-O
 - big-Omega
 - big-theta
- asymptotic notation
- commonly used functions
- discrete math refresher

READING:

• GT textbook chapter 4

Analysis of algorithms

- Analysis of algorithms and data structure is the major force that drives the design of solutions.
 - there are many solutions to a problem
 - pick the one that is the most efficient
 - how to compare various algorithms? Analyze algorithms.
- Algorithm analysis: analyze the cost of the algorithm
 - cost = time: How much time does this algorithm require?
 - The primary efficiency measure for an algorithm is time
 - all concepts that we discuss for time analysis apply also to space analysis
 - cost = space: How much space (i.e. memory) does this algorithm require?
 - cost = space + time
 - etc
- Running time of an algorithm
 - increases with input size
 - on inputs of same size, can vary from input to input
 - e.g.: linear search an un-ordered array
 - depends on hardware
 - CPU speed, hard-disk, caches, bus, etc
 - depends on OS, language, compiler, etc

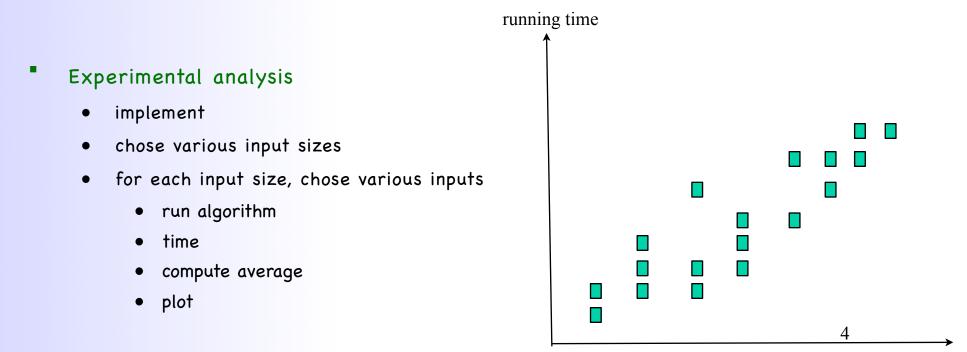
Analysis of algorithms

Everything else being equal

- we'd like to compare between algorithms
- we'd like to study the relationship running time vs. size of input

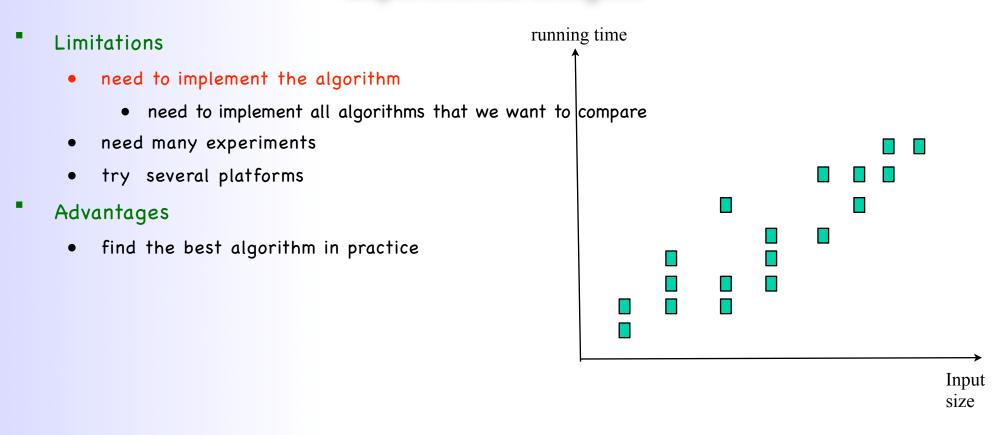
How to measure running time of an algorithm?

- 1. experimental studies
- 2. theoretical analysis



Input size

Experimental analysis



- We would like to analyze algorithms without having to implement them
- Basically, we would like to be able to look at two algorithms flowcharts and decide which one is better

Theoretical analysis

- Model: RAM model of computation
 - Assume all operations cost the same
 - Assume all data fits in memory
- Running time (efficiency) of an algorithm:
 - the number if operations executed by the algorithm
- Does this reflect actual running time?
 - multiply nb. of instructions by processor speed
 - 1GHz processor ==> 10⁹ instructions/second
- Is this accurate?
 - Not all instructions take the same...
 - various other effects.
 - Overall, it is a very good predictor of running time in most cases.

Notations

- Notation:
 - n = size of the input to the problem
- Running time:
 - number of operations/instructions on an input of size n
 - expressed as function of n: f(n)
- For an input of size n, running time may be smaller on some inputs than on others
- Best case running time:
 - the smallest number of operations on an input of size n
- Worst-case running time:
 - the largest number of operations on an input of size n
- For any n
 - best-case running time(n) <= running time(n) <= worst-case running time (n)
- Ideally, want to compute average-case running time
 - hard to model

Running times

- Expressed as functions of n: f(n)
- The most common functions for running times are the following:
 - constant time :
 - f(n) = c
 - logarithmic time
 - f(n) = lg n
 - linear time
 - f(n) = n
 - nlg n
 - f(n) = n lg n
 - quadratic
 - f(n) = n^2
 - cubic
 - f(n) = n^3
 - exponential
 - f(n) = a^n

Constant time

- f(n) = c
 - Meaning: for any n, f(n) is a constant c

Elementary operations

- arithmetic operations
- boolean operations
- assignment statement
- function call
- access to an array element a[i]
- etc

Logarithmic time

- $f(n) = \lg_c n$
- logarithm definition:
 - x = log c n if and only of c [×] = n
 - by definition, log _c 1 = 0
- In algorithm analysis we use the ceiling to round up to an integer
 - the ceiling of x (the smallest integer >= x)
 - e.g. ceil(log $_{b}$ n) is the number of times you can divide n by b until we get a number <= 1
 - e.g.
 - $ceil(log_2 8) = 3$
 - ceil(log 2 10) = 4
- Notation: lg n = log 2 n
- Refresher: Logarithm rules

Simplify these expressions

- lg 2n =
- lg (n/2) =
- lg n³ =
- lg 2ⁿ
- log 4 n =
- 2 lg n

Binary search

Searching a sorted array

```
//return the index where key is found in a, or -1 if not found
public static int binarySearch(int[] a, int key) {
    int left = 0;
    int right = a.length-1;
    while (left <= right) {</pre>
        int mid = left + (right-left)/2;
        if (key < a[mid]) right = mid-1;</pre>
        else if (key > a[mid]) left = mid+1;
        else return mid;
    }
    //not found
    return -1;
}
```

- running time:
 - best case: constant
 - worst-case: lg n

Why? input size halves at every iteration of the loop


```
f(n) = n
```

```
Example:
```

- doing one pass through an array of n elements
- e.g.
- finding min/max/average in an array
- computing sum in an array
- search an un-ordered array (worst-case)

```
int sum = 0
for (int i=0; i< a.length; i++)
    sum += a[i]</pre>
```

n-lg-n running time

- f(n) = n lg n
- grows faster than n (i.e. it is slower than n)
- grows slower than n²
- Examples
 - performing n binary searches in an ordered array
 - sorting

Quadratic time

- $f(n) = n^2$
- appears in nested loops
- enumerating all pairs of n elements
- Example 1:

Example2:

```
//selection sort:
for (i=0; i<n; i++)
    minIndex = index-of-smallest element in a[i..n-1]
    swap a[i] with a[minIndex]</pre>
```

- running time:
 - index-of-smallest element in a[i..j] takes j-i+1 operations
 - n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
 - this is n^2

Math refresher

Lemma:

• 1+2+3+4+....+(n-2)+(n-1)+n = n(n+1)/2 (arithmetic sum)

Proof:

Cubic running times

- Cubic running time: f(n) = n3
- In general, a polynomial running time is: f(n) = nd, d>0
- Examples:

- nested loops
- Enumerate all triples of elements
- Imagine cities on a map. Are there 3 cities that no two are not joined by a road?
 - Solution: enumerate all subsets of 3 cities. There are n chose 3 different subsets, which is order n3.

Exponenial running time

- Exponential running time: f(n) = an , a > 1
- Examples:
 - running time of Tower of Hanoi (see later)
 - moving n disks from A to B requires at least 2n moves; which means it requires at least this much time
- Math refresher: exponent rules:

Comparing Growth-Rates

• $1 < lgn < n < nlgn < n^2 < n^3 < a^n$

Asymptotic analysis

- Focus on the growth of rate of the running time, as a function of n
- That is, ignore the constant factors and the lower-order terms
- Focus on the big-picture
- Example: we'll say that 2n, 3n, 5n, 100n, 3n+10, n + lgn, are all linear

Why?

- constants are not accurate anyways
- operations are not equal
- capture the dominant part of the running time

Notations:

- Big-Oh:
 - express upper-bounds
- Big-Omega:
 - express lower-bounds
- Big-Theta:
 - express tight bounds (upper and lower bounds)

Big-Oh

Definition: f(n) is O(g(n)) if exists c >0 such that $f(n) \le c g(n)$ for all n >= n0

Intuition:

- big-oh represents an upper bound
- when we say f is O(g) this means that
 - f <= g asymptotically
 - g is an upper bound for f
 - f stays below g as n goes to infinity

Examples:

- 2n is O(n)
- 100n is O(n)
- 10n + 50 is O(n)
- 3n + lg n is O(n)
- lg n is O(log_10 n)
- lg_10 n is O(lg n)
- $5n^{4} + 3n^{3} + 2n^{2} + 7n + 100$ is $O(n^{4})$

Big-Oh

- ² $2n^2 + n \lg n + n + 10$
 - is $O(n^2 + n \lg n)$
 - is O(n³)
 - is O(n⁴)
 - isO(n²)
- ³n + 5
 - is O(n¹⁰)
 - is O(n²)
 - is O(n+lgn)
- Let's say you are 2 minutes away from the top and you don't know that. You ask: How much further to the top?
 - Answer 1: at most 3 hours (True, but not that helpful)
 - Answer 2: just a few minutes.
- When finding an upper bound, find the best one possible.

Exercises

Write Big-Oh upper bounds for each of the following.

- 10n 2
- 5n³ + 2n² +10n +100
- 5n² + 3nlgn + 2n + 5
- 20n³ + 10n lg n + 5
- ³ n lgn + 2
- 2^(n+2)
- 2n + 100 lgn

Big-Omega

- Definition:
 - f(n) is Omega(g(n)) if exists c >0 such that f(n) >= c g(n) for all n >= n0
- Intuition:
 - big-omega represents a lower bound
 - when we say f is Omega(g) this means that
 - f >= g asymptotically
 - g is a lower bound for f
 - f stays above g as n goes to infinity

- Examples:
 - 3nlgn + 2n is Omega(nlgn)
 - 2n + 3 is Omega(n)
 - 4n² + 3n + 5 is Omega(n)
 - 4n² + 3n + 5 is Omega(n²)

Big-Theta

Definition:

- f(n) is Theta(g(n)) if f(n) is O(g(n)) and f is Omega(g(n))
- i.e. there are constants c' and c'' such that c' $g(n) \leq f(n) \leq c'' g(n)$
- Intuition:
 - f and g grow at the same rate , up to constant factors
 - Theta captures the order of growth

Examples:

- 3n + lg n + 10 is O(n) and Omega(n) ==> is Theta(n)
- 2n² + n lg n + 5 is Theta(n²)
- 3lgn +2 is Theta(lgn)

Asymptotic Analysis

- Find tight bounds for the best-case and worst-case running times
- Running time is Omega(best-case running time)
- Running time is O(worst-case running time)
- Example:
 - binary search is Theta(1) in the best case
 - binary search is Theta(lg n) in the worst case
 - binary search is Omega(1) and O(lg n)
- Usually we are interested the worst-case running time
 - a Theta-bound for the worst-case running time
- Example:
 - worst-case binary search is Theta(lg n)
 - worst-case linear search is Theta(n)
 - worst-case insertion sort is Theta(n^2)
 - worst-case bubble-sort is O(n²)
 - worst-case find-min in an array is Theta(n)
- It is correct to say worst-case binary search is O(lg n), but a Theta-bound is better

Asymptotic Analysis

- Suppose we have two algorithms for a problem:
 - Algorithm A has a running time of O(n)
 - Algorithm B has a running time of $O(n^2)$

Which is better?

Asymptotic Analysis

- Suppose we have two algorithms for a problem:
 - Algorithm A has a running time of Theta(n)
 - Algorithm B has a running time of Theta(n^2)

- Which is better?
 - order classes of functions by their oder of growth
 - Theta(1) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n^2) < Theta(n^3) < Theta(2^n)
 - Theta(n) is better than Theta(n^2)
 - etc
 - Cannot distinguish between algorithms in the same class
 - two algorithms that are Theta(n) worst-case are equivalent theoretically
 - optimization of constants can be done at implementation-time

Order of growth matters

Example:

- Say n = 10⁹ (1 billion elements)
- 10 MHz computer ==> 1 instruction takes 10^-7 seconds
- Binary search would take
 - Theta(lg n) = lg 10^9 x 10^-7 sec = 30 x10^-7 sec = 3 microsec
- Sequential search would take
 - Theta(n)= 10^9 × 10^-7 sec = 100 seconds
- Finding all pairs of elements would take
 - Theta(n²) = (10⁹)² × 10⁻⁷ sec = 10¹¹ seconds = 3170 years
- Imagine Theta(n^3)
- Imagine Theta(2^n)

Order of growth matters

n	lg n	n	n lg n	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,29 6
64	6	64	384	4,096	262,144	1.8 x 10^19
128	7	128	896	16,384	2,097,152	3.40 x 10^38
256	8	256	2.048	65,536	16,777,216	1.15 x 10^77
512	9	512	4,608	262,144	134,217,728	1.34 x 10^154
1024	10	1024				
1024^2	20	1,048,576				
10^9						30

- Assume we have a 1 GHz computer.
- This means an instruction takes 1 microsecond (10⁻⁹ seconds).
- We have 3 algorithms:
- A: 400n
- B 2n^2
- C: 2^n
- What is the maximum input size that can be solved with each algorithm in:
 - 1 second

•	1	min	ute

1 hour

Running time (in microseconds)	1 sec	1 min	1 hour
400n			
2n^2			
2^n			31

Exercise

- We have an array X containing a sequence of numbers. We want to compute another array A such that A[i] represents the average X[0] + X[1] + ... X[i]/ (i+1).
 - A[0] = X[0]
 - A[1] = (X[0] + X[1]) / 2
 - A[2] = (X[0] + X[1] + X[2]) / 3
 - ...
- The first i values of X are referred to as the i-prefix of X.
 X[0] + ... X[i] is called prefix-sum, and A[i] prefix average.
- Application: In Economics. Imagine that X[i] represents the return of a mutual fund in year i. A[i] represents the average return over i years.
- Write a function that creates, computes and returns the prefix averages. double[] computePrefixAverage(double[] X)
- Analyze your algorithm (worst-case running time).

Asymptotic Analysis: Overview

- Running time = number of instructions
 - RAM model of computation
- Want the worst-case running time as a function of input size
 - the largest number of instructions on an input of size n
- Find the tight order of growth of the worst-case running time
 - a Theta-bound

Classification of growth rates

```
Theta(1) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n^2) < Theta(n^3) < Theta(2^n)
```

At the algorithm design level, we want to find the most efficient algorithm in terms of growth rate

We can optimize constants at the implementation step