
csci 210:  Data Structures

Program Analysis

1



Summary
 Summary

• analysis of algorithms 

• asymptotic analysis

• big-O
• big-Omega
• big-theta

• asymptotic notation 

• commonly used functions

• discrete math refresher

 READING:
• GT textbook chapter 4
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Analysis of algorithms
 Analysis of algorithms and data structure is the major force that drives the design of 

solutions.
• there are many solutions to a problem 

• pick the one that is the most efficient 

• how to compare various algorithms?   Analyze algorithms.
 Algorithm analysis: analyze the cost of the algorithm

• cost = time:    How much time does this algorithm  require? 

• The primary efficiency measure for an algorithm is time

• all concepts that we discuss for time analysis apply also to space analysis 
• cost = space:  How much space (i.e. memory)  does this algorithm require? 

• cost = space + time 

• etc

 Running time of an algorithm 
• increases with input size 

• on inputs of same size, can vary from input to input

• e.g.: linear search an un-ordered array 
• depends on hardware

• CPU speed, hard-disk,  caches, bus, etc 

• depends on OS, language, compiler, etc 3



Analysis of algorithms
 Everything else being equal

• we’d like to compare between algorithms

• we’d like to study the relationship  running time  vs.  size of input 

 How to measure running time of an algorithm? 
• 1.  experimental studies 

• 2.  theoretical analysis 

 Experimental analysis 
• implement 

• chose various input sizes

• for each input size, chose various inputs

• run algorithm 
• time
• compute average
• plot 

Input 
size

running time 
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Experimental analysis
 Limitations 

• need to implement the algorithm

• need to implement all algorithms that we want to compare
• need many experiments 

• try  several platforms 
 Advantages

• find the best algorithm in practice

 We would like to analyze algorithms without  having to implement them
 Basically, we would like to be able to look at two  algorithms flowcharts and decide 

which one is better

Input 
size

running time 
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Theoretical analysis
 Model: 

• Assume all operations cost the same 

• Assume all data fits in memory 

 Running time (efficiency) of an algorithm: 
• the number if operations executed by the algorithm

 Does this reflect actual running time? 
• multiply nb. of instructions by processor speed 

• 1GHz processor ==>  10^9 instructions/second

 Is this accurate? 
• Not all instructions take the same... 

• various other effects.

• Overall,  it is a very good predictor of running time in most cases. 
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Notations
 Notation: 

• n = size of the input to the problem 
 Running time:   

• number of operations/instructions on an input of size n 

• expressed as function of n:  f(n) 

 For an input of size n,  running time may be smaller on some inputs than on others

 Best case running time: 
• the smallest number of operations on an input of size n 

 Worst-case running time: 
• the largest number of operations on an input of size n

 For any n 
• best-case running time(n)  <=   running time(n)   <=   worst-case running time (n)

 Ideally, want to compute average-case running time 
• hard to model
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Running times
 Expressed  as functions of n: f(n) 
 The most common functions for running times are the following: 

• constant time :  

• f(n) = c
• logarithmic time

• f(n) = lg n 

• linear time 

• f(n) = n 
• n lg n 

• f(n) = n lg n 
• quadratic 

• f(n) = n^2
• cubic

• f(n) = n^3
• exponential 

• f(n) = a^n
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Constant time
 f(n) = c

• Meaning:  for any n, f(n) is a constant c

  Elementary operations
• arithmetic operations

• boolean operations

• assignment statement 

• function call 

• access to an array element a[i]

• etc
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Logarithmic time
 f(n) = lg c n
 logarithm definition: 

• x = log c n if and only of c x = n

• by definition, log c 1 = 0

 In algorithm analysis  we use the ceiling to round up to an integer
• the ceiling of x (the smallest integer >= x)

• e.g. ceil(log b n)  is the number of times you can divide n by b until we get a number <= 1

• e.g. 

• ceil(log 2 8)  = 3 

• ceil(log 2 10) = 4 

 Notation:  lg n = log 2 n 

 Refresher: Logarithm rules
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Exercises

Simplify these expressions

 lg 2n = 

 lg (n/2) = 

 lg n3 = 

 lg 2n

 log 4 n = 

 2 lg n 
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Binary search 
 Searching a sorted array 

//return the index where key is found in a, or -1 if not found

public static int binarySearch(int[] a, int key) {

int left = 0; 

int right = a.length-1; 

while (left <= right)  {

int mid = left + (right-left)/2;

if (key < a[mid]) right = mid-1; 

else if (key > a[mid]) left = mid+1; 

else return mid;

}

//not found 

return -1;

}

 running time:  
• best case:  constant 

• worst-case: lg n 

Why?  input size halves at every iteration of the loop 12



Linear running time
 f(n) = n 

 Example: 
• doing one pass through an array of n elements

• e.g.  

• finding min/max/average in an array 

• computing sum in an array

• search  an un-ordered array (worst-case)

int sum = 0

for (int i=0; i< a.length; i++) 

sum += a[i]

13



n-lg-n running time
 f(n) = n lg n

 grows faster than n (i.e. it is slower than n)
 grows slower than n2

 Examples
• performing n binary searches in an ordered array 

• sorting

14



Quadratic time
 f(n) = n2

 appears in nested loops
 enumerating all pairs of n elements
 Example 1: 

for (i=0; i<n; i++)

for (j=0; j<n; j++) 

//do something 

 Example2: 
//selection sort: 

for (i=0; i<n; i++) 

minIndex = index-of-smallest element in a[i..n-1]

swap a[i] with a[minIndex]

• running time: 

• index-of-smallest element in a[i..j] takes j-i+1 operations 
• n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1

• this is n2
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Math refresher
 Lemma:   

• 1+ 2 + 3 + 4 + ..... + (n-2) + (n-1) + n =  n(n+1)/2   (arithmetic sum)

 Proof: 
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Cubic running times
 Cubic running time:  f(n) = n3
 In general, a polynomial running time is: f(n) = nd,  d>0
 Examples: 

• nested loops 

• Enumerate all triples of elements 

• Imagine  cities on a map. Are there 3 cities that no two are not joined by a road?

• Solution: enumerate all subsets of 3 cities.  There are n chose 3 different subsets, which is 
order n3. 
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Exponenial running time
 Exponential running time:  f(n) = an ,   a > 1

 Examples: 
• running time of Tower of Hanoi (see  later)

• moving n disks from A to B requires at least 2n moves; which means it requires at least this 
much time

 Math refresher: exponent rules: 
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Comparing Growth-Rates
 1  <   lg n  <   n <   n lg n <   n2  <   n3   <   an
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Asymptotic analysis
 Focus on the growth of rate of the running time, as a function of n 
 That is, ignore the constant factors and the lower-order terms
 Focus on the big-picture
 Example:  we’ll say that 2n, 3n, 5n, 100n, 3n+10, n + lgn,  are all linear 

 Why? 
• constants are not accurate anyways 

• operations are not equal

• capture the dominant part of the running time

 Notations: 
• Big-Oh:  

• express upper-bounds
• Big-Omega:  

• express lower-bounds 

• Big-Theta: 

• express tight bounds (upper and lower bounds) 20



Big-Oh 
 Definition:  f(n) is O(g(n)) if  exists c >0 such that f(n) <= c g(n) for all n >= n0

 Intuition: 
• big-oh represents an upper bound 

• when we say f is O(g) this means that  

• f <= g asymptotically
• g is an upper bound for f 
• f stays below g as n goes to infinity 

 Examples: 
•  2n is O(n) 

• 100n is O(n) 

• 10n + 50 is O(n) 

• 3n + lg n is O(n) 

• lg n is O(log_10 n)

• lg_10 n is O(lg n)

• 5n^4 + 3n^3 + 2n^2 + 7n + 100 is O(n^4)
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Big-Oh
 2n2 + n lg n +n + 10 

• is O(n2 + n lg n) 

• is O(n3) 

• is O(n4) 

• isO(n2) 

 3n + 5 
• is O(n10) 

• is O(n2) 

• is O(n+lgn) 

 Let’s say you are 2 minutes away from the top and you don’t know that.   

You ask: How much further to the top? 
• Answer 1: at most 3 hours (True, but not that helpful)

• Answer 2: just a few minutes.  

 When finding an upper bound, find the best  one possible.
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Exercises

Write Big-Oh upper bounds for each of the following. 

 10n - 2 

 5n^3 + 2n^2 +10n +100

 5n^2 + 3nlgn + 2n + 5

 20n^3 + 10n lg n + 5

 3 n lgn + 2

 2^(n+2)

 2n + 100 lgn
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Big-Omega
 Definition: 

• f(n) is Omega(g(n)) if  exists c >0 such that f(n) >= c g(n) for all n >= n0

 Intuition: 
• big-omega represents a lower bound 

• when we say f is Omega(g) this means that  

• f >= g asymptotically
• g is a lower bound for f 
• f stays above g as n goes to infinity 

 Examples: 

• 3nlgn + 2n  is Omega(nlgn)

• 2n + 3 is  Omega(n) 

• 4n^2 +3n + 5 is Omega(n)
• 4n^2 +3n + 5 is Omega(n^2) 
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Big-Theta
 Definition: 

• f(n) is Theta(g(n)) if  f(n) is O(g(n)) and f is Omega(g(n))

• i.e. there are constants c’ and c’’ such that c’ g(n)  <= f(n)  <= c” g(n) 

 Intuition: 
• f and g grow at the same rate ,  up to constant factors

• Theta captures the order of growth

 Examples: 
• 3n + lg n + 10  is O(n) and Omega(n) ==> is Theta(n) 

• 2n^2 + n lg n + 5  is Theta(n^2) 

• 3lgn +2 is Theta(lgn) 
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Asymptotic Analysis
 Find tight bounds for the best-case and worst-case running times
 Running time is Omega(best-case running time) 
 Running time is O(worst-case running time) 

 Example: 
• binary search is Theta(1) in the best case

• binary search is Theta(lg n) in the worst case 

• binary search is Omega(1) and O(lg n)

 Usually we are interested the worst-case running time 
• a Theta-bound for the worst-case running time 

 Example: 
• worst-case binary search is Theta(lg  n)

• worst-case linear search is Theta(n) 

• worst-case insertion sort is Theta(n^2) 

• worst-case bubble-sort is O(n^2) 

• worst-case find-min in an array is Theta(n) 
 It is correct to say worst-case binary search is  O(lg n), but a Theta-bound is better
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Asymptotic Analysis
 Suppose we have two algorithms for a problem: 

• Algorithm A  has a running time of O(n) 

• Algorithm B has a running time of O(n^2) 

 Which is better? 

27



Asymptotic Analysis
 Suppose we have two algorithms for a problem: 

• Algorithm A  has a running time of Theta(n) 

• Algorithm B has a running time of Theta(n^2) 

 Which is better?
• order classes of functions by their oder of growth

• Theta(1) < Theta(lg n)  <  Theta(n)  <  Theta(nlgn) < Theta(n^2) < Theta(n^3)  < Theta(2^n) 

• Theta(n) is better than Theta(n^2) 

• etc

• Cannot distinguish between algorithms in the same class

• two algorithms that are Theta(n) worst-case are equivalent theoretically 
• optimization of constants can be done at implementation-time 
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Order of growth matters
 Example: 

• Say n = 10^9 (1 billion elements)

• 10 MHz computer  ==> 1 instruction  takes 10^-7 seconds

• Binary search would take 

• Theta(lg n) = lg 10^9 x 10^-7 sec = 30 x10^-7 sec = 3 microsec
• Sequential search would take 

• Theta(n)= 10^9 x 10^-7 sec = 100 seconds
• Finding all pairs of elements would take 

• Theta(n^2) = (10^9)^2 x 10^-7 sec = 10^11 seconds =  3170 years

• Imagine Theta(n^3)  

• Imagine Theta(2^n) 
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Order of growth matters

n lg n n n lg n n^2 n^3 2^n

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,536

32 5 32 160 1,024 32,768 4,294,967,29
6

64 6 64 384 4,096 262,144 1.8 x 10^19

128 7 128 896 16,384 2,097,152 3.40 x 10^38

256 8 256 2.048 65,536 16,777,216 1.15 x 10^77

512 9 512 4,608 262,144 134,217,728 1.34 x 10^154

1024 10 1024

1024^2 20 1,048,576

10^9
30



 Assume we have a 1 GHz computer. 
 This means an instruction takes 1 microsecond (10^-9 seconds). 

 We  have 3 algorithms: 
 A:   400n 
 B    2n^2
 C:   2^n 

 What is the maximum input size that can be solved with each algorithm  in: 
• 1 second

• 1 minute

• 1 hour

Running time

(in microseconds)
1 sec 1 min 1 hour

400n

2n^2

2^n
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Exercise
 We have an array X containing a sequence of numbers.  We want to compute another 

array  A such that A[i] represents the average X[0] + X[1] + ... X[i]/ (i+1). 
• A[0] = X[0]

• A[1] = (X[0] + X[1])/ 2

• A[2] = (X[0] + X[1] + X[2]) / 3

• ...

 The first i values of X are referred to as the i-prefix of X.  

X[0] + ... X[i] is called prefix-sum, and A[i]  prefix average. 

 Application:  In Economics. Imagine that X[i] represents the return of a mutual fund 
in year i.  A[i] represents the average return over i years. 

 Write a function that creates, computes and returns the prefix averages. 
double[] computePrefixAverage(double[] X) 

 Analyze your algorithm (worst-case running time). 
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Asymptotic Analysis: Overview

 Running time  = number of instructions 
• RAM model of computation 

 Want the worst-case running time  as a function of input size
• the largest number of instructions on an input of size n

 Find the tight order of growth of the worst-case running time 
• a Theta-bound  

 Classification of growth rates
Theta(1) < Theta(lg n)  <  Theta(n)  <  Theta(nlgn) < Theta(n^2) < Theta(n^3)  < Theta(2^n) 

 At the algorithm design level, we want to find the  most efficient algorithm in 
terms of growth rate 

 We can optimize constants at the implementation step 
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