
1

csci 210: Data Structures

Trees

Summary
 Topics

• general trees, definitions and properties

• interface and implementation

• tree traversal algorithms
• depth and height
• pre-order traversal
• post-order traversal

• binary trees
• properties
• interface
• implementation

• binary search trees
• definition
• h-n relationship
• search, insert, delete
• performance

 READING:
• GT textbook chapter 7 and 10.1

2

Trees
 So far we have seen linear structures

• linear: before and after relationship

• lists, vectors, arrays, stacks, queues, etc
 Non-linear structure: trees

• probably the most fundamental structure in computing

• hierarchical structure

• Terminology: from family trees (genealogy)

3

Trees
 store elements hierarchically

 the top element: root

 except the root, each element has a parent

 each element has 0 or more children

root

4

Trees
 Definition

• A tree T is a set of nodes storing elements such that the nodes have a parent-child
relationship that satisfies the following

• if T is not empty, T has a special tree called the root that has no parent
• each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

 Recursive definition
• T is either empty

• or consists of a node r (the root) and a possibly empty set of trees whose roots are the
children of r

 Terminology
• siblings: two nodes that have the same parent are called siblings

• internal nodes
• nodes that have children

• external nodes or leaves
• nodes that don’t have children

• ancestors

• descendants
5

Trees
root

internal nodes

leaves

6

Trees

ancestors of u

u

7

Trees

u

descendants of u

8

Application of trees

 Applications of trees
• class hierarchy in Java

• file system

• storing hierarchies in organizations

9

Tree ADT

 Whatever the implementation of a tree is, its interface is the following
• root()

• size()

• isEmpty()

• parent(v)

• children(v)

• isInternal(v)

• isExternal(v)

• isRoot()

10

Tree Implementation

class Tree {

TreeNode root;

//tree ADT methods..

}

class TreeNode<Type> {

Type data;

int size;

TreeNode parent;

TreeNode firstChild;

TreeNode nextSibling;

getParent();

getChild();

getNextSibling();

}
11

 Depth:
• depth(T, v) is the number of ancestors of v, excluding v itself

 Recursive formulation
• if v == root, then depth(v) = 0

• else, depth(v) is 1 + depth (parent(v))

 Compute the depth of a node v in tree T: int depth(T, v)

 Algorithm:
int depth(T,v) {

if T.isRoot(v) return 0

return 1 + depth(T, T.parent(v))

}

 Analysis:
• O(number of ancestors) = O(depth_v)

• in the worst case the path is a linked-list and v is the leaf

• ==> O(n), where n is the number of nodes in the tree

Algorithms on trees: Depth

12

 Height:
• height of a node v in T is the length of the longest path from v to any leaf

 Recursive formulation:
• if v is leaf, then its height is 0

• else height(v) = 1 + maximum height of a child of v

 Definition: the height of a tree is the height of its root

 Compute the height of tree T: int height(T,v)

 Height and depth are “symmetrical”
 Proposition: the height of a tree T is the maximum depth of one of its leaves.

Algorithms on trees: Height

13

Height
 Algorithm:

int height(T,v) {

if T.isExternal(v) return 0;
int h = 0;
for each child w of v in T do

h = max(h, height(T, w))
return h+1;

}

 Analysis:
• total time: the sum of times spent at all nodes in all recursive calls

• the recursion:
• v calls height(w) recursively on all children w of v
• height() will eventually be called on every descendant of v
• overall: height() is called on each node precisely once, because each node has one parent

• aside from recursion
• for each node v: go through all children of v

– O(1 + c_v) where c_v is the number of children of v
• over all nodes: O(n) + SUM (c_v)

– each node is child of only one node, so its processed once as a child
– SUM(c_v) = n - 1

• total: O(n), where n is the number of nodes in the tree
14

Tree traversals
 A traversal is a systematic way to visit all nodes of T.

 pre-order: root, children
• parent comes before children; overall root first

 post-order: children, root
• parent comes after children; overall root last

void preorder(T, v)

visit v

for each child w of v in T do

preorder(w)

void postorder(T, v)

for each child w of v in T do

postorder(w)

visit v

� Analysis: O(n) [same arguments as before]
15

Examples
 Tree associated with a document

 In what order do you read the document?

Pape
r

Title Abstract Ch1 Ch2 Ch3 Refs

1.1 1.2 3.1 3.2

16

Example
 Tree associated with an arithmetical expression

 Write method that evaluates the expression. In what order do you traverse the tree?

+

3 *

-

12 5

+

1 7

17

Binary trees

18

Binary trees
 Definition: A binary tree is a tree such that

• every node has at most 2 children

• each node is labeled as being either a left chilld or a right child

 Recursive definition:
• a binary tree is empty;

• or it consists of

• a node (the root) that stores an element
• a binary tree, called the left subtree of T
• a binary tree, called the right subtree of T

 Binary tree interface

• left(v)
• right(v)
• hasLeft(v)
• hasRight(v)
• + isInternal(v), is External(v), isRoot(v), size(), isEmpty()

19

 In a binary tree
• level 0 has <= 1 node

• level 1 has <= 2 nodes

• level 2 has <= 4 nodes

• ...

• level i has <= 2^i nodes

 Proposition: Let T be a binary tree with n nodes and height h. Then

• h+1 <= n <= 2 h+1 -1

• lg(n+1) - 1 <= h <= n-1

Properties of binary trees

d=0

d=1

d=2

d=3

20

Binary tree implementation
 use a linked-list structure; each node points to its left and right children ; the tree

class stores the root node and the size of the tree

 implement the following functions:

• left(v)
• right(v)
• hasLeft(v)
• hasRight(v)
• isInternal(v)
• is External(v)
• isRoot(v)
• size()
• isEmpty()

• also

• insertLeft(v,e)
• insertRight(v,e)
• remove(e)
• addRoot(e)

data

left right

parentBTreeNode:

21

Binary tree operations
 insertLeft(v,e):

• create and return a new node w storing element e, add w as the left child of v

• an error occurs if v already has a left child

 insertRight(v,e)

 remove(v):
• remove node v, replace it with its child, if any, and return the element stored at v

• an error occurs if v has 2 children

 addRoot(e):
• create and return a new node r storing element e and make r the root of the tree;

• an error occurs if the tree is not empty

 attach(v,T1, T2):
• attach T1 and T2 respectively as the left and right subtrees of the external node v

• an error occurs if v is not external

22

Performance
 all O(1)

• left(v)

• right(v)

• hasLeft(v)

• hasRight(v)

• isInternal(v)

• is External(v)

• isRoot(v)

• size()

• isEmpty()

• addRoot(e)

• insertLeft(v,e)

• insertRight(v,e)

• remove(e)

23

Binary tree traversals

 Binary tree computations often involve traversals

• pre-order: root left right

• post-order: left right root

 additional traversal for binary trees
• in-order: left root right

• visit the nodes from left to right

 Exercise:
• write methods to implement each traversal on binary trees

24

Application: Tree drawing
 Come up with a solution to “draw” a binary tree in the following way. Essentially, we

need to assign coordinate x and y to each node.
• node v in the tree

• x(v) = ?
• y(v) = ?

0 1 2 3

0

1

2

3

4
4 5 6 7

25

Application: Tree drawing
 We can use an in-order traversal and assign coordinate x and y of each node in the

following way:

• x(v) is the number of nodes visited before v in the in-order traversal of v

• y(v) is the depth of v

0 1 2 3

0

1

2

3

4
4 5 6 7

26

Binary tree searching
 write search(v, k)

• search for element k in the subtree rooted at v

• return the node that contains k

• return null if not found

 performance
• ?

27

Binary Search Trees (BST)
 Motivation:

• want a structure that can search fast

• arrays: search fast, updates slow

• linked lists: search slow, updates fast
 Intuition:

• tree combines the advantages of arrays and linked lists

 Definition:
• a BST is a binary tree with the following “search” property

– for any node v allows to search efficientlyv

T1 T2

k

all nodes in T1<= k all node in T2 > k 28

BST
 Example

v

T1 T2

k

<= k > k

29

Sorting a BST
 Print the elements in the BST in sorted order

30

Sorting a BST
 Print the elements in the BST in sorted order.

 in-order traversal: left -node-right
 Analysis: O(n)

//print the elements in tree of v in order
sort(BSTNode v)

if (v == null) return;
sort(v.left());
print v.getData();
sort(v.right());

31

Searching in a BST

32

Searching in a BST
//return the node w such that w.getData() == k or null if such a node

//does not exist

BSTNode search (v, k) {

if (v == null) return null;

if (v.getData() == k) return v;

if (k < v.getData()) return search(v.left(), k);

else return search(v.right(), k)

}

 Analysis:
• search traverses (only) a path down from the root

• does NOT traverse the entire tree

• O(depth of result node) = O(h), where h is the height of the tree 33

Inserting in a BST
 insert 25

34

Inserting in a BST
 insert 25

• There is only one place where 25 can go

 //create and insert node with key k in the right place
 void insert (v, k) {

//this can only happen if inserting in an empty tree

if (v == null) return new BSTNode(k);

if (k <= v.getData()) {

 if (v.left() == null) {

//insert node as left child of v

u = new BSTNode(k);

v.setLeft(u);

} else {

 return insert(v.left(), k);

}

} else //if (v.getData() > k) {

...

}

}

25

35

Inserting in a BST
 Analysis:

• similar with searching

• traverses a path from the root to the inserted node

• O(depth of inserted node)

• this is O(h), where h is the height of the tree

36

Deleting in a BST
 delete 87
 delete 21
 delete 90

 case 1: delete a leaf x
• if x is left of its parent, set parent(x).left = null

• else set parent(x).right = null

 case 2: delete a node with one child
• link parent(x) to the child of x

 case 2: delete a node with 2 children
• ?? 37

Deleting in a BST
 delete 90

 copy in u 94 and delete 94
• the left-most child of right(x)

 or
 copy in u 87 and delete 87

• the right-most child of left(x)

u

node has <=1 child

node has <=1 child

38

Deleting in a BST

 Analysis:
• traverses a path from the root to the deleted node

• and sometimes from the deleted node to its left-most child

• this is O(h), where h is the height of the tree

39

BST performance
 Because of search property, all operations follow one root-leaf path

• insert: O(h)

• delete: O(h)

• search: O(h)

 We know that in a tree of n nodes

• h >= lg (n+1) - 1

• h <= n-1

 So in the worst case h is O(n)
• BST insert, search, delete: O(n)

• just like linked lists/arrays

40

BST performance
 worst-case scenario

• start with an empty tree

• insert 1

• insert 2

• insert 3

• insert 4

• ...

• insert n

 it is possible to maintain that the height of the tree is Theta(lg n) at all times
• by adding additional constraints

• perform rotations during insert and delete to maintain these constraints

 Balanced BSTs: h is Theta(lg n)
• Red-Black trees

• AVL trees

• 2-3-4 trees

• B-trees
 to find out more.... take csci231 (Algorithms) 41

