csci 210: Data Structures

Trees

Summary

Topics
e general trees, definitions and properties
e infterface and implementation

e free traversal algorithms
e depth and height

e pre-order traversal

e post-order traversal
binary trees

e properties

e interface

e implementation

binary search trees

e definition
e h-n relationship
e search, insert, delete

e performance

READING:
e GT textbook chapter 7 and 10.1

Trees

" So far we have seen linear structures
e linear: before and after relationship

e lists, vectors, arrays, stacks, queues, etc

Non-linear structure: trees
e probably the most fundamental structure in computing
® hierarchical structure

e Terminology: from family trees (genealogy)

JUBLERHOULOE

store elements hierarchically

the top element: root

except the root, each element has a parent

each element has O or more children

Trees

Definition

e A treeT is a set of nodes storing elements such that the nodes have a parent-child
relationship that satisfies the following

e if T is not empty, T has a special tree called the root that has no parent

e each node v of T different than the root has a unique parent node w; each node with parent w is a child of w

Recursive definition
e T is either empty

e or consists of a node r (the root) and a possibly empty set of trees whose roots are the
children of r

Terminology

® siblings: two nodes that have the same parent are called siblings
e internal nodes
e nodes that have children
external nodes or leaves
® nodes that dont have children

ancestors

descendants

ancestors of u

descendants of u

Application of trees

Applications of trees
e class hierarchy in Java
e file system

e storing hierarchies in organizations
g g

Tree ADT

Whatever the implementation of a tree is, its intferface is the following

e root()
size()
iSEmpty()
parent(v)
children(v)
isInternal(v)
isExternal(v)

isRoot()

Tree Implementation

class Tree {

TreeNode root;

//tree ADT methods..

class TreeNode<Type> {

Type data;
int size;

TreeNode parent;

TreeNode firstChild;

TreeNode nextSibling;

getParent () ;
getChild();
getNextSibling();

Algorithms on trees: Depth

Depth:

e depth(T, v) is the number of ancestors of v, excluding v itself

Recursive formulation
e if v ==root, then depth(v) = O
e else, depth(v) is 1 + depth (parent(v))

Compute the depth of a node v in tree T:

Algorithm:
int depth(T,v) {
if T.isRoot(v) return 0

return 1 + depth(T, T.parent(v))
}

Analysis:

e O(number of ancestors) = O(depth_v)

int depth(T, v)

e in the worst case the path is a linked-list and v is the leaf

e ==> O(n), where n is the number of nodes in the tree

Algorithms on trees: Height

Height:
® height of a node v in T is the length of the longest path from v to any leaf

Recursive formulation:
e if vis leaf, then its height is O
e else height(v) =1 + maximum height of a child of v

Definition: the height of a tree is the height of its root

Compute the height of tree T: int height(T,v)

Height and depth are “symmetrical”

Proposition: the height of a tree T is the maximum depth of one of its leaves.

Algorithm:

int height(T,v) {
if T.isExternal(v) return O;
int h =0;
for each child w of vin T do
h = max(h, height(T, w))
return h+l;

;
Analysis:
e fotal time: the sum of times spent at all nodes in all recursive calls

e the recursion:
e v calls height(w) recursively on all children w of v
e height() will eventually be called on every descendant of v
e overall: height() is called on each node precisely once, because each node has one parent
e aside from recursion
e for each node v: go through all children of v
- O(1 + c_v) where c_v is the number of children of v
e over all nodes: O(n) + SUM (c_v)
- each node is child of only one node, so its processed once as a child
- SUM(c_v) =n-1

e total: O(n), where n is the number of nodes in the tree

Tree traversals

A traversal is a systematic way to visit all nodes of T.

pre-order: root, children

e parent comes before children; overall root first

post-order: children, root

e parent comes after children; overall root last

void preorder (T, V)
visit v
for each child w of v in T do

preorder (w)

void postorder (T, V)
for each child w of v in T do

postorder (w)

visit v

Analysis: O(n) [same arguments as before]

Examples

Tree associated with a document

Pape
y

Title Abstract Chl Ch2 Ch3 Refs

A4S

1.1 1.2

In what order do you read the document?

Example

Tree associated with an arithmetical expression

Write method that evaluates the expression. In what order do you traverse the free?

17

Binary trees

Binary trees

Definition: A binary tree is a tree such that

e every node has at most 2 children

e each node is labeled as being either a left chilld or a right child

Recursive definition:
® a binary tree is empty;
e or it consists of
e a node (the root) that stores an element
® a binary tree, called the left subtree of T

® a binary tree, called the right subtree of T

Binary tree interface
o left(v)
e right(v)
e hasLeft(v)
hasRight(v)
+ isInternal(v), is External(v), isRoot(v), size(), isEmpty()

Properties of binary trees

In a binary tree
e J|evel O has <= 1 node
level 1 has <= 2 nodes

level 2 has <= 4 nodes

level i has <= 27i nodes

Proposition: Let T be a binary tree with n nodes and height h. Then
® h+l <= n <= 2M -]

o Ig(n+l) -1 <=

Binary tree implementation

use a linked-list structure; each node points to its left and right children ; the tree
class stores the root node and the size of the tree

. t

implement the following functions:
o left(v)

e right(v) (ot)
e hasLeft(v) / aa\

hasRight(v) left right
isInternal(v)

is External(v)
isRoot(v)
size()

BTreeNode: parent

iSEmpty()

insertLeft(v,e)
insertRight(v,e)
remove(e)
addRoot(e)

Binary tree operations

insertLeft(v,e):
e create and refturn a new node w storing element e, add w as the left child of v

® an error occurs if v already has a left child

insertRight(v,e)

remove(v):
e remove node v, replace it with its child, if any, and return the element stored at v

° an error occurs if v has 2 children

addRoot(e):

e create and return a new node r storing element e and make r the root of the tree;

e an error occurs if the tree is not empty

attach(v,T1, T2):
e atftach Tl and T2 respectively as the left and right subtrees of the external node v
® an error occurs if v is not external

22

0o(1)

left(v)

right(v)
hasLeft(v)
hasRight(v)
isInternal(v)
is External(v)
isRoot(v)
size()
iSEmpty()
addRoot(e)
insertLeft(v,e)
insertRight(v,e)

remove(e)

Performance

Binary tree traversals

Binary tree computations often involve traversals

e pre-order: root left right

e post-order: left right root

additional traversal for binary trees

e in-order: left root right

e visit the nodes from left to right

Exercise:

e write methods to implement each traversal on binary trees

Application: Tree drawing

Come up with a solution to "draw” a binary tree in the following way. Essentially, we
need to assign coordinate x and y to each node.
e node v in the tree
o x(v) =7
e y(v) =7

Application: Tree drawing

We can use an in-order traversal and assign coordinate x and y of each node in the
following way:

e x(v) is the number of nodes visited before v in the in-order traversal of v

e y(v) is the depth of v

Binary tree searching

write search(v, k)
e search for element k in the subtree rooted at v
e return the node that contains k

e return null if not found

performance

o ?

Binary Search Trees (BST)

Motivation:
e want a structure that can search fast
e arrays: search fast, updates slow
e linked lists: search slow, updates fast
Intuition:

e tree combines the advantages of arrays and linked lists

Definition:

® a BST is a binary tree with the following “"search” property

\% \ allows to search efficiently

T T>

- for any node v

all nodes in T1<=k all node in T2 > k

—
),
m
qv)
(@)
§
y
o
.

Print the elements in the BST in sorted order

Sorting a BST

Print the elements in the BST in sorted order.

//print the elements in tree of v in order
sort (BSTNode V)
if (v == null) return;
sort(v.left());
in-order traversal: left -node-right print v.getData();
sort(v.right());

Analysis: O(n)

—
)
o
©
-
o
=
=
O
| -
©
D
0P

Searching in a BST

//return the node w such that w.getData() == k or null if such a node
//does not exist
BSTNode search (v, k) {

if (v == null) return null;

if (v.getData() == k) return v;

if (k < v.getData()) return search(v.left(), k);

else return search(v.riaht(). kl

~

sle

P T

//31 Em\v
21 30’
/ SN

a1 ‘a5 lag

-
18 ‘g 1""8 79 4‘

" Analysis:
® search traverses (only) a path down from the root

® does NOT traverse the entire tree

® O(depth of result node) = O(h), where h is the height of the tree

—
).
m
®
S
(@)
3
g
O
(7p)
=

insert 25

Inserting in a BST

insert 25

® There is only one place where 25 can go

%f%?@4

//create and insert node with key k in tb_ ______ _____

void insert (v, k) {
//this can only happen if inserting in an empty tree

if (v == null) return new BSTNode(k);

if (k <= v.getData()) {
if (v.left() == null) {
//insert node as left child of v
u = new BSTNode(k);
v.setLeft(u);
} else {
return insert(v.left(), k);

}
} else //if (v.getData() > k) {

Inserting in a BST

Analysis:
e similar with searching

e traverses a path from the root to the inserted node

e O(depth of inserted node)
this is O(h), where h is the height of the tree

Deleting in a BST

delete 87
delete 21
delete 90

case 1: delete a
e if x is left of its parent, set parent(x).left

e else set parent(x).right = null

case 2: delete a node with one child

e link parent(x) to the child of x

case 2: delete a node with 2 children

o 2?7

delete 90

copy in u 94 and delete 94
e the left-most child of right(x)

or

copy in u 87 and delete 87
e the right-most child of left(x)

Deleting in a BST

node has <=1 child

node has <=1 child

Deleting in a BST

Analysis:
e traverses a path from the root to the deleted node

e and sometimes from the deleted node to its left-most child
e this is O(h), where h is the height of the tree

BST performance

Because of search property, all operations follow one rootf-leaf path
e insert: O(h)
e delete: O0Of(h)
e search: O(h)

" We know that in a tree of n nodes

e ho>=lg(n+l) - 1
e h <=n-1
" So in the worst case h is O(n)
e BST insert, search, delete: O(n)

® just like linked lists/arrays

BST performance

worst-case scenario
e start with an empty tree
e insert1
e insert 2
insert 3

insert 4

insert n
® it is possible to maintain that the height of the tree is Theta(lg n) at all times

e by adding additional constraints

e perform rotations during insert and delete to maintain these constraints

Balanced BSTs: h is Theta(lg n)
e Red-Black trees
e AVL frees
® 2-3-4 frees

e B-trees

to find out more.... take csci231 (Algorithms)

