
csci 210: Data Structures

Lists and Iterators

Summary

• Topics
• Java

• Vector, ArrayList, Stack, LinkedList, Collections
• extendable arrays

• analysis
• Iterators

• READING:
• GT textbook chapter 6 (6.1 through 6.4)

ArrayLists and Vectors

• classes provided by Java
• Java.util.ArrayList
• Java.util.Vector

• practically identical

• provide support for “smart” arrays
• allow variable size of array
• support useful methods

• get(i)
• set(i,e)
• add(i,e)
• remove(i)
• add(e)
• size()
• isEmpty()

• Exercise: implementation
• Notation

• N is the maximum capacity of the array
• n is the current size

Performance

• Performance
• get(i) : O(1)
• set(i,e): O(1)
• add(i,e): O(n)
• remove(i): O(n)
• size(): O(1)
• isEmpty(): O(1)
• add(e): O(1) unless overflow

• ArrayLists and Vectors also grow the array
• whenever add(e) occurs and the array is full, the array is re-allocated of double size
• let’s say N is the current max capacity of the array A
• allocate B[] of size 2N
• copy A[i] into B[i] for all i
• [free the space of A: note: this does not happen in Java, the garbage collector will find out

that the space of A is not in use anymore and will free it]
• A = B
• add e to A as usual

Analysis of extendable arrays

• Question: How long does add(e) take?
• O(1) if the array does not grow
• O(n) if the arrays grows (need to copy all elements of A to B)

• Suppose you start with an empty array of size 1, and you add n elements. How long will this
take?

• O(n^2) ?
• 1 + 2 + 3 + 4 + +n ?

• Lemma:
• A sequence of n add() on an initially empty array that grows by doubling take O(n) time.

• Intuition:
• some add() need to relocate and are slow, but many are O(1)
• reallocations are not that frequent
• once the array is reallocated, it is half empty so the next bunch of add() are O(1)

Analysis of extendable arrays

• assume initial capacity of A is 1 and A is empty
• add(e)

max capacity cost of copy cost of add

1 add() 1 - O(1)

2 add() 2 1 O(1)

3 add() 4 2 O(1)

4 add() - O(1)

5 add() 8 4 O(1)

6 add() - O(1)

7 add() - O(1)

8 add() - O(1)

9 add() 16 8 O(1)

... add() - O(1)

17 add() 32 16 O(1)

Analysis of extendable arrays

• Imagine you charge each add() $3
• you use $1 to pay for the actual add()
• you leave $2 as credit on the element

• We shall prove that the doubling can be paid for by credits accumulated in between doublings.

• Imagine you just doubled the array

• and you charged this last add() that caused the doubling $3, so you have $2 left

N

2N

N

2N

$2

Analysis of extendable arrays

• the next add() : no overflow, O(1)

• ...

• the array gets full again after N add()
• total credit accumulated: N x $2 = 2N
• cost of copying the array: 2N

N

2N

$2 $2

N

2N

$2 $2 $2 $2

Iterators

• An iterator abstracts the process of scanning through a collection of elements one at a time

• An iterator is a class with the following interface

• boolean hasNext()

• return true if there are elements left in the iterator

• Type next()

• return the next element in the iterator

Iterators in Java

• Java.util.Iterator interface
• Classes that implement collections of elements also support the following method()

• iterator()

• return an iterator of the elements in the collection

• Example
ArrayList<Type> a;
//Vector<Type> a;
//Stack<Type> a;
//LinkedList<Type> a;

Iterator<Type> it = a.iterator();
while (it.hasNext()) {

Type e = it.next();
//process e
//...

}
//or
for (Iterator<Type> it = a.iterator(); it.hasNext();) {

Type e = it.next();

//...
}

List iterators

• The preferred way to access a Java.util.LinkedList is through an iterator

•
• \\

• a ListIterator includes

Iterators

• Why use iterators?
• More generic code

• you can change the data structure, and the loop remains the same

