csci 210: Data Structures

Lists and Iterators

e Topics

e Java
e Vector, ArrayList, Stack, LinkedList, Collections
e extendable arrays
e analysis

e [terators

e READING:
e @GT textbook chapter 6 (6.1 through 6.4)

classes provided by Java
e Java.util. ArrayList
e Java.util.Vector

practically identical

provide support for “smart” arrays

e allow variable size of array
e support useful methods
e get(l)
e set(i,e)
e add(ie)
* remove(i)
e add(e)
e size()
* isEmpty()
Exercise: implementation
Notation
* N is the maximum capacity of the array
* nis the current size

e Performance
e get(i): O(1)
e set(i,e): O(1)
e add(,e): O(n)
e remove(i): O(n)
size(): O(1)
iIsEmpty(): O(1)
add(e): O(1) unless overflow

e ArrayLists and Vectors also grow the array

whenever add(e) occurs and the array is full, the array is re-allocated of double size
let’s say N is the current max capacity of the array A
e allocate B[] of size 2N

e copy Ali] into B[i] foralli

[free the space of A: note: this does not happen in Java, the garbage collector will find out
that the space of A is not in use anymore and will free it]

A=B

add e to A as usual

Question: How long does add(e) take?
e O(1) if the array does not grow
* O(n) if the arrays grows (need to copy all elements of A to B)

Suppose you start with an empty array of size 1, and you add n elements. How long will this
take?

e O(nN2)?
e 1+2+3+4+....4+4n ?

Lemma:
e A sequence of n add() on an initially empty array that grows by doubling take O(n) time.

Intuition:
* some add() need to relocate and are slow, but many are O(1)

» reallocations are not that frequent

» once the array is reallocated, it is half empty so the next bunch of add() are O(1)

assume initial capacity of Ais 1 and A is empty
add(e)

max capacity

cost of copy

cost of add

o(l)

2

O(1)

4

O(1)

O(1)

O(1)

o(l)

o(l)

O(1)

O(1)

o(l)

o(l)

Analysis of extendable arrays

e Imagine you charge each add() $3
e you use $1 to pay for the actual add()
e you leave $2 as credit on the element
e We shall prove that the doubling can be paid for by credits accumulated in between doublings.

e Imagine you just doubled the array

N —>

>
2N

e and you charged this last add() that caused the doubling $3, so you have $2 left

Analysis of extendable arrays

e the next add() : no overflow, O(1)

(7
<

* the array gets full again after N add()
e total credit accumulated: N x $2 =2N
e cost of copying the array: 2N

e An iterator abstracts the process of scanning through a collection of elements one at a time

e An iterator is a class with the following interface

boolean hasNext ()

e return true if there are elements left in the iterator

Type next()

¢ return the next element in the iterator

e Java.util.Iterator interface
e C(lasses that implement collections of elements also support the following method()
iterator ()

e return an iterator of the elements in the collection

e Example
ArrayList<Type> a;
//Vector<Type> a;
//Stack<Type> a;
//LinkedList<Type> a;

Iterator<Type> it = a.iterator();
while (it.hasNext()) {

Type e = it.next();

//process e

//...

}
//or

for (Iterator<Type> it = a.iterator(); it.hasNext();) {
Type e = it.next();
//"'

List iterators

* The preferred way to access a Java.util.LinkedList is through an iterator

dA5tideXUI (uUDlect O)
Returns the index in this list of the last occurrence of the specified element, or -1 if the list does not contain this elem

ListIterator|]ljigtIterator(int index)
Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list.

Object | pemove (int index)

listlterator

public ListIterator listIterator({int index)

Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list. Obeys the general contract of

List.listIterator{int}.

The list-iterator is fail-fast: if the list is structurally modified at any time after the Iterator is created, in any way except through the list-iterator's
OWN remove Or add methods, the list-iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification,
the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.

Specified by:

listIterator in interface List

Specified by:

listIterator in class AbstractSeguentiallist

Parameters:
index - index of first element to be returmned from the list-iterator (by a call to next).
Returns:
a ListIterator of the elements in this list (in proper sequence), starting at the specified position in the list.
Throws:
IndexOutOfBoundsException - if index is out of range (index < 0 index > size()).
See Also:

List.listIterator{int)

e a Listlterator includes

| Method Summary

vold

add (Object o)
Inserts the specified element into the list (optional operation).

hasNext()
Remms true if this list iterator has more e¢lements when traversing the list in the forward direction.

hasPrevious()
Remms true if this list iterator has more elements when traversing the list in the reverse direction.

next()
Returns the next element in the list.

nextIndex()
Retumns the index of the element that would be returned by a subsequent call to next.

previous()
Retumns the previous element in the list.

previousIndex()
Rewmms the index of the element that would be returned by a subsequent call to previous.

remove()
Removes from the list the last element that was returned by next or previous (optional operation).

set (Object o)
Replaces the last element returned by next Or previous with the specified element (optional operation).

Iterators

e Why use iterators?
e More generic code

* you can change the data structure, and the loop remains the same

