Java Graphics

Java has two libraries for creating GUIs (graphical users interfaces): awt and
swing. The Swing toolkit is newer, and richer. We’ll be using both. Your programs
will start by importing awt and swing classes as follows:

import javax.swing.x*
import java.awt.*

A GUI application consists of individual components you can interact with: but-
tons and menus and labels, text fields, drawing areas, icons. All these are called
components.

To appear on screen, every GUI component must be part of a containment hierar-
chy. A containment hierarchy is a tree of components that has a top-level container
as its root.

1. WRITING AN APPLICATION THAT HANDLES A WINDOW

Swing provides three container classes JFrame, JApplet, JDialog (defined in
javax.swing.*) which allow the programmer to create and handle windows.

Today we’ll learn about a JFrame. A JFrame is an object that can handle a
window on screen, which has a toolbar and a border, can handle mouse events,
colors, buttons, etc. It has a canvas on which it can draw things.

A class that needs to do graphics and pop up a window on the screen will inherit
from JFrame (or one of the other containers listed above). When a class B inherits
from a class A, this means that it implicitly contains all the instance variables and
methods defined in class A (see the handout on inheritance).

import javax.swing.x*
import java.awt.*

public class xxx extends JFrame {

Suppose we want to write a class that will pop up a window. Its skeleton will be
like this:

/*

* GSkeleton: This is the skeleton of a graphics class
* Qauthor Laura Toma

* Qversion jan 2008

*/

import javax.swing.x*

import java.awt.*

csci210: Data Structures Spring 2008



2 . Java Graphics

public class GSkeleton extends JFrame {

// instance variables

public GSkeleton() {
super ("My first graphics window");
setSize (400, 400);

//...whatever else is needed in the constructor

//exit the program when the window is closed
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;

//shows this component/window
setVisible(true);

};

2. HANDLING THE MOUSE

To pick up mouse events a class has to implement MouseInputListener (which
extends MouseListener and MouseMotionListener). This is an interface — a
list of methods that must be implemented. When a class promises to implement
an interface this basically means that it makes a contract to implement the set of
methods specified in the interface. See the handout on interfaces.

In this case, the mouse handling methods specified in MouseInputListener are
the following.

import javax.swing.x*
import javax.swing.event.x*
import java.awt.*

import java.awt.event.x*

public class xxx extends JFrame implements MouseInputListener {

public void mousePressed(MouseEvent e);
public void mouseDragged(MouseEvent e);
public void mouseReleased(MouseEvent e);

public void mouseClicked(MouseEvent e);

csci210: Data Structures Spring 2008.



Java Graphics . 3

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mouseMoved(MouseEvent e);

Note that in order to handle mouse events you need to import java.swing.event.*
and java.awt.event.*. Note that these are different than the ones you import to
work with windows.

3. A JAVA CLASS THAT HANDLES A WINDOW AND MOUSE

Suppose we want to write a class that will pop up a window and handle some mouse
events. Its skeleton will be like this:

/*

* GSkeleton: This is the skeleton of a graphics class
* Qauthor Laura Toma
* Qversion jan 2008

*/

import
import
import
import

public

//

javax.swing.*
javax.swing.event.x*
java.awt.*
java.awt.event.*

class GSkeleton extends JFrame implements MouseInputListener {

instance variables

public GSkeleton() {

super("My first graphics window");
setSize (400, 400);

//...whatever else is needed in the constructor

//exit the program when the window is closed
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//shows this component/window
setVisible(true);

//this class will "listen" to the mouse, that is it will receive mouse events;
//for this it must implement a set of pre-defined functions;
//every mouse event will call the corresponding method in this class

csci210: Data Structures Spring 2008.



4 . Java Graphics

addMouseMotionListener (this);
addMouseListener (this);

3

//this method is called when mouse is pressed
public void mousePressed(MouseEvent e) {

System.out.println("mouse pressed at (" + e.getX() + "," e.getY() + ")";
}

//this method is called when the mouse is dragged
public void mouseDragged(MouseEvent e) {

System.out.println("mouse dragged to" + e.getX() + "," e.getY() + ")";
}

public void mouseReleased(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {2}
public void mouseExited(MouseEvent e) {3}
public void mouseMoved(MouseEvent e) {}

public static void main (String args[]) {
GSkeleton mywin = new GSkeleton();
}

};

4. DRAWING IN A WINDOW

In order to draw in the window, one needs to grab the canvas of the JFrame, which
is of type Graphics:

Graphics g = this.getGraphics();

Note: this refers to the current object.
Check the documentation for the methods supported by Graphics. Here are
some of them. They must be called on a Graphics object.

—drawLine(Point pl, Point p2)
—drawImage(...)
—drawOval(), drawPolygon(), drawRect, filArc(), fillOval, etc
—getColor(), setColor(), getFont(), setFont() etc
The Java coordinate (0,0) is in the upper left corner.
To put an object on a canvas:

csci210: Data Structures Spring 2008.



Java Graphics . 5

Graphics g = this.getGraphics();
g.drawLine(..)

5. IN-CLASS PROGRAMMING

The goal for the very first Java program is to write an application that lets you
scribble on a canvas in the usua way: when pressing the mouse you want to start
drawing, then keep the mouse pressed and drag it around while the movement is
shown/drawn on the canvas, until the mouse is released.

You will have a single class that will do all the work. In addition to the skeleton
above, it will need one or a few instance variables. What are these variables? What
would you like to happen when you press the mouse? what about when you drag
the mouse? When/where does the drawing actually happen? What happens when
you release the mouse?

So, which mouse methods will you implement, and which ones will you leave
empty?

Additional Reading
—Bailey Appendix B
—Bailey chapter 1, 2
—BlueJ tutorial

csci210: Data Structures Spring 2008.



