csci 210: Data Structures

Stacks and Queues

Summary

Topics
e Stacks and Queues as abstract data types (ADT)

e Implementations

® arrays

e linked lists

Analysis and comparison

Applications: searching with stacks and queues

e In-class problem: missionary and cannibals

e In-class problem: finding way out of a maze

Searching a solution space: Depth-first and breadth-first search (DFS, BFS)

Stacks and Queues

Fundamental “abstract” data structures

e we think of them conceptually in terms of their interface and functionality

e we use them as building blocks in problems without assuming a certain
implementation (the implementation may vary)

Interface:

e Stacks and Queues handle a collection of elements

e Operations: -

insert(e)
remove()
iSEmpty()
getSize()

(" Stacks 4 Queues

® only last element can be delefed e only first element can be deleted
e ==>insert and delete at one end e ==>insert at one end, delete at other

* last-in-first-out (LIFO) e first-in-first-out (FIFO) ;
\-

J

maEge a1

Q

Large men)

Close-up of a stack of Amencan coins
Stockbyte Photos

FRICE / INFO
Add to Lightbox
RF Royalty Free

Cioso-up of stacks of draught pieces
Stockbyte Photos

FRICE / INFO
Add to Lightbox
RF Royalty Free

Close-up of a slack of Amarican coins
Stockbyte Photos

FRICE / INFO
Add o Lighthox
RF Royalty Free

Large stack of bils and mail
Big Cheese Photos

FRICE / INFO
Add to Lightbox
RF Royalty Free

Stack interface

Stack analogy

rage 1

Close-up of a stack of books
Stockbyte Photos
FRICE / INFO
Add io Lightbox
RF Royalty Free

Close-up of slacks of draught pieces
Stockbyte Photos

FRICE / INFO
Add o Lightbox
RF Royalty Free

push(e) : insert element e (at top

pop() :

size():

OF £93 | Next >>

<

Ciose-up of a stack of lextbooks
Stockbyte Photos

FRICE / INFO
Add to Lightbox
RF Royalty Free

Ciose-up of a stack of lextbooks
Stockbyte Photos
PRICE / INFO
Add to Lightbox
RF Royalty Free

of stack)

iSEmpty(): return true if queue is empty

Stepladder and Stacks of White Boxes
Brand X Pictures

FRICE FINFO
Add to Lightbox
RF Royalty Free

Frant view porrail of boy helding stack
of books {10-11)
Stockbyte Photos
FRICE /INFOI
Add to Lightbox
RF Royalty Free

return the number of elements in the queue

Stacked woad
PhotoAlto Images

FRICE { INFO
Add fo Lightbox
RF Royalty Free

Stack of bath sponges
BananaStock Photos

FRICE { INFO
Add to Lightbox
RF Royalty Free

delete and return the top of stack (last inserted element)

Queue Analogy

Queue interface

enqueue(e): insert element e (at end of queue)
dequeue(): delete and return the front of queue (the first inserted element)
size(): return the number of elements in the queue

isEmpty(): return true if queue is empty

Applications

Are stacks and queues useful?

e YES. They come up all the time.

Stacks

e Web browsers store the addresses of recently visited sites on a stack

® Each time the visits a new site ==> pushed on the stack. Browsers allow to “pop” back to
previously visited site.

undo-mechanism in an editor

The changes are kept in a stack. When the user presses “undo” the stack of changes is popped.

function-call mechanism

the active (called but not completed) functions are kept on a stack
each time a function is called, a new frame describing its context is pushed onto the stack

the context of a method: its parameters, local variables, what needs to be returned, and
where to return (the instruction to be executed upon return)

when the function returns, its frame is popped, the context is reset to the previous method
(now on top of the stack) and the program continues by executing the previously suspended

method
6

Applications

Are stacks and queues useful?

e YES. They come up all the time.

Queues

® Queue of processes waiting fo be processed

e for e.g. the queue of processes to be scheduled on the CPU.

e the process at front is dequeued and processed. New processes are added at the end of the
queue.

e Round-robin scheduling: iterate through a set of processes in a circular manner
and service each element:

e the process at front is dequeued, allowed to run for some CPU cycles, and then enqueued at
the end of the queue

Using Stacks

java.util.Stack

Constructor Summary

Stack()
Creates an empty Stack.

Method Summary

boolean | ampey ()
Tests if this stack is empty.

obiect | paak()
Looks at the object at the top of this stack without removing it from the stack.

Object pop()
Removes the object at the top of this stack and returns that object as the value of this function.

bbject |push {0Object item)
Pushes an item onto the top of this stack.

search({0Object o)
Returns the 1-based position where an object is on this stack.

Using Stacks

import java.util.Stack;

//a stack of integers

Stack<Integer> st = new Stack<Integer>();
st.push (Integer(3)) ;

st.push (Integer(5)) ;

st.push (Integer(2));

//print the top
System.out.print(st.peek());

st.pop();

st.pop();

st.pop();

//a stack of Strings

Stack<String> st = new Stack<String>();

Using Stacks

import java.util.Stack;

//a stack of integers
Stackst = new Stack<Integer>();
st.push (Integer(3)) 3
st.push (Integer(5)) ;
st.push (Integer(2));

//print the top generic type

System.out.print(st.peek());
st.pop(); class Stack uses generics

st.pop();
st.pop();

//a stack of Strings

Stack<String> st = new Stack<String>();

Stacks

a Stack can contain elements of arbitrary type E

Use generics: define Stack in terms of a generic element type E
e Stack<E> {

o }..
When instantiating Stack, specify E

Stack<String> st;

Note: could use Object, but then need to cast every pop()

Implementing a Stack

A Stack interface

Implementing a Stack with arrays
Implementing a Stack with linked lists

Analysis, comparison

/[**
* Interface for a stack: a collection of objects that are inserted
* and removed according to the last-in first-out principle. This
* interface includes the main methods of java.util.Stack.
*/
public interface Stack<E> {
/[**
* Return the number of elements in the stack.
* @return number of elements in the stack.
*/
public int size();
/ * %
* Return whether the stack is empty.
* @return true if the stack is empty, false otherwise.
*/
public boolean isEmpty();
/**
* Inspect the element at the top of the stack.
* @return top element in the stack.
* @exception EmptyStackException if the stack is
*/
BN Cc E top ()
throws EmptyStackException;
/[**
* Insert an element at the top of the stack.
* @param element to be inserted.
*/
public void push (E element);
/**

* Remove the top element from the stack.
* @return element removed.
* @exception EmptyStackException if the stack is
*/
public E pop()
throws EmptyStackException;

Implementing a Stack

Stacks can be implemented efficiently with both
® arrays

e |inked lists

Array implementation of a Stack

2 - 5

T

top of stack

Linked-list implementation of a Stack

e a linked list provides fast inserts and deletes at head

e ==> keep top of stack at front

top of StaN
5 4 7

Implementing Stacks

Exercise: Sketch each implementation

public class StackWithArray<E> implements Stack {

Efficiency ?

Compare ?

Stack: Arrays vs Linked-List Implementations

Array

e simple and efficient Method

e assume a fixed capacity for array size()
e if CAP is too small, can reallocate, but expensive

e if CAP is too large, space waste 1IsSEmpty()

top

" Lists

® no size limitation

e extra space per element

Summary:

e when know the max. number of element, use arrays

Implementing a Queue

A Queue interface

Implementing a Queue with arrays
Implementing a Queue with linked lists

Analysis, comparison

A Queue Interface

public interface Queue<E> {
/ * %
* Returns the number of elements in the queue.
* @return number of elements in the queue.
* /
public int size();
/**
* Returns whether the queue is empty.
* @return true if the queue is empty, false otherwise.
*/
public boolean isEmpty();
/**
* Inspects the element at the front of the queue.
* @return element at the front of the queue.
* @exception EmptyQueueException if the queue is empty.
*/
public E front() throws EmptyQueueException;
/[**
* Inserts an element at the rear of the queue.
* @param element new element to be inserted.
*/
public void enqueue (E element);
/ **
* Removes the element at the front of the queue.
* @return element removed.
* @exception EmptyQueueException if the queue is empty.
*/

public E dequeue() throws EmptyQueueException;

Queue Implementations

Queue with arrays

e if we insert at front and delete at end
® need to shift elements on inserts ==> insert not O(1)
e if we insert at the end and delete at front

e need to shift elements to delete ==> delete not O(1)

* Queue with linked-list

® in a singly linked-list can delete at front and insert at end in O(1)

front of m A of list

e Exercise: skeftch implementation

® Analysis?

Queue Implementations

Queue with arrays

e cant have both insert and delete 0O(1)

Queue with linked-list

front of hs\A Al of list
o) 4 5

Method Time

size() O(1)

iIsEmpty() O(1)

front O(1)

enqueue O(1)

dequeue O(1)

Queue with a Circular Array

A queue can be implemented efficiently with a circular array if we Know the
maximum number of elements in the queue at any time

dequeue enqueue

enqueue dequeue

Exercise: sketch implementation

