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Analysis of algorithms

• Analysis of algorithms and data structure is the major force that drives the design of 
solutions.

• there are many solutions to a problem:   pick the one that is the most efficient 

• how to compare various algorithms?   Analyze algorithms.

• Algorithm analysis: analyze the cost of the algorithm

• cost = time:    How much time does this algorithm  require? 

• The primary efficiency measure for an algorithm is time
• all concepts that we discuss for time analysis apply also to space analysis 

• cost = space:  How much space (i.e. memory)  does this algorithm require? 

• cost = space + time 

• cost = bandwidth (amount of data sent over the internet)

• etc



Analysis of algorithms

• Running time of an algorithm: 

• it increases with input size 

• on inputs of same size, it can vary from input to input

• it depends on hardware
• CPU speed, hard-disk,  caches, bus, etc 

• it depends on OS, language, compiler, etc

• Everything else being equal

• we’d like to compare algorithms

• we’d like to study the relationship  running time  vs.  size of input 



• How to measure running time of an algorithm? 

• 1.  experimental studies 

• 2.  theoretical analysis 

Analysis of algorithms



• Experimental analysis 

• implement 

• chose various input sizes

• for each input size, chose various inputs
• run algorithm 

• time

• compute average
• plot 

• Limitations 

• need to implement the algorithm

• need to implement all algorithms that we want to compare

• need many experiments 

• try  several platforms 

• Advantages

• find the best algorithm in practice

Analysis of algorithms

Input 
size

running time 



Analysis of algorithms

• We would like to analyze algorithms without  having to implement them

• Basically, we would like to be able to look at two  algorithms flowcharts and decide 
which one is better

===> theoretical analysis



Theoretical analysis

• RAM model of computation

• Assume all operations cost the same 

• Assume all data fits in memory 

• Running time (efficiency) of an algorithm: 

• the number if operations executed by the algorithm

• Does this reflect actual running time? 

• multiply nb. of instructions by processor speed 
• 1GHz processor ==>  10^9 instructions/second

• Is this accurate? 

• Not all instructions take the same... 

• Various other effects.

• Overall,  it is a very good predictor of running time 



Terminology

• Notation:  n = size of the input to the problem 

• Running time:   

• number of operations/instructions executed on an input of size n 

• expressed as function of n:  f(n) 

• For an input of size n,  running time may be smaller on some inputs than on others

• Best case running time: 

• the smallest number of operations on an input of size n 

• Worst-case running time: 

• the largest number of operations on an input of size n

• For any n 

• best-case running time(n)  <=   running time(n)   <=   worst-case running time (n)

• Ideally, want to compute average-case running time 

• need to know the distribution of the input

• often assume uniform distribution (all inputs are equally likely), but this may not 
be realistic



Examples

• Linear search

• Binary search

• Selection sort

• Insertion sort

• Bubble sort

10



Linear search
//return the position of first occurrence or -1 if not found

int search (double a[], double target)  {

for (int i=0;  i< a.length; i++) 

if (a[i]  == target)  return i; 

//if we got here, no element matched

return -1; 

}

• Analysis

• best-case: constant

• worst-case:  (order of ) n      <------------ linear time

• Other examples (of linear time) 

• doing one pass through an array of n elements, for e.g.  finding min/max/average 
in an array, computing sum in an array

int sum = 0

for (int i=0; i< a.length; i++) 
sum += a[i]
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Binary search 

//return the index where key is found in a, or -1 if not found

public static int binarySearch(int[] a, int key) {

int left = 0; 

int right = a.length-1; 

while (left <= right)  {

int mid = left + (right-left)/2;

if (key < a[mid]) right = mid-1; 

else if (key > a[mid]) left = mid+1; 

else return mid;

}

//not found 

return -1;

}

• running time:  

• best case:  constant 

• worst-case: lg n     <-------------- logarithmic time
Why?  input size halves at every iteration of the loop



Math refresher

• The arithmetic sum:    1+ 2 + 3 + 4 + ..... + (n-2) + (n-1) + n =  n(n+1)/2  

• Proof: 



Selection sort

//selection sort: 

for (i=0; i < n-1; i++) 

minIndex = index-of-smallest element in a[i..n-1]

swap a[i] with a[minIndex]

• Analysis 

• index-of-smallest element in a[i..j] takes j-i+1 operations 

• n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1

• this is n2     <-------------------- quadratic 

• best case? 

• worst-case? 
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Bubble sort

//assume an array a of n elements:   a[0], ....a[n-1]
for k=1 to n-1 

//do a swap pass 

for i=0 to n-2

if (a[i] > a[i+1])  then swap a[i], a[i+1]

• Analysis

Best-case? 
Worst-case?
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Insertion sort
//input: array a[] of size n

for i=1 to n-1 

//invariant: a[0]...a[i-1] is sorted 

shift  a[i] to its correct place so that a[0]...a[i] is sorted 

• Analysis

• best case

• worst-case
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Asymptotic analysis

• Focus on the growth of rate of the running time, as a function of n 

• That is, ignore the constant factors and the lower-order terms

• Focus on the big-picture

• Example:  we’ll say that 2n, 3n, 5n, 100n, 3n+10, n + lg n,  are all linear 

• Why? 

• constants are not accurate anyways 

• operations are not equal

• capture the dominant part of the running time

• Notations: 

• Big-Oh:  
• express upper-bounds

• Big-Omega:  
• express lower-bounds 

• Big-Theta: 
• express tight bounds (upper and lower bounds)



Big-Oh 

• Definition: 

• f(n), g(n)

• f is O(g) if  exists c > 0 and n0 such that f(n) <= cg(n) for all n >= n0

• Big-oh represents an upper bound 

• When we say f is O(g) this means that  

• f <= g asymptotically

• g is an upper bound for f 

• f stays below g as n goes to infinity 

• Another way to check is to compute the limit f/g when n goes to infinity 

• if this limit is 0 or a constant ==> f is O(g)

• if this limit is infinity ==> g is O(f)

• Examples: 

• 2n is O(n),  100n is O(n) 

• 10n + 50 is O(n) 

• 3n + lg n is O(n) 

• lg n is O(log_10 n),   

• lg_10 n is O(lg n)



Exercises

• Mark as true or false: 

• 100n is O(n) 

• n is O(n)

• 15n+7 is O(lg n)

• 15n+7 is O(n2) 

• 5n2+4 is O(n)

• 4n2+9n+8 is O(n2) 

• 4n2+9n+8 is O(n3) 
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• Definition: 

• f(n), g(n)

• f is Omega(g) if  exists c>0 such that f(n) >= cg(n) for all n >= n0

• Big-omega represents a lower bound 

• When we say f is Omega(g) this means that  

• f >= g asymptotically

• g is a lower bound for f 

• f stays above g as n goes to infinity 

• Another way to check is to compute the limit f/g when n goes to infinity 

• if this limit is a constant or infinity ==> f is Omega(g)

• if this limit is 0 ==> g is Omega(f)

• Examples: 

• 3nlgn + 2n  is Omega(n)

• 2n + 3       is Omega(n) 

• 4n2 +3n + 5 is Omega(n)

• 4n2 +3n + 5 is Omega(n2) 

• O() and Omega() are symmetrical:   f is O(g)   <====>  g  is Omega(f)

Big-Omega



Exercises

• Mark as true or false: 

• 100n is Omega(n) 

• 2n is Omega(n)

• 15n+7 is Omega(lg n)

• 15n+7 is Omega(n2) 

• 5n2+4 is Omega(n)

• 4n2+9n+8 is Omega(n2) 

• 4n2+9n+8 is Omega(n3) 
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We want tight bounds

• 2n2 + n lg n +n + 10 

• is O(n2) , O(n3) , O(n4) , O(n10)... 

• 3n + 5 

• is O(n), O(n10), O(n2), ...

• Let’s say you are 2 minutes away 
from the top and you don’t know 
that.    You ask: How much further 
to the top? 

• Answer 1: at most 3 hours 
(True, but not that helpful)

• Answer 2: just a few minutes.  

• When finding an upper bound, the 
goal is to find the best (smallest)  
one possible.

• 2n2 + n lg n +n + 10 

• is Omega(1), Omega(lg n), 
Omega(n) , Omega(n lg n) 

• 3n + 5 

• is Omega(1), Omega( lg n) , 
Omega(n) 

• You ask at an interview: How much 
will my salary be? 

• Answer 1: at least 1 dollar a 
month (True, but not that 
helpful)

• Answer 2: at least 5,000  a 
month (that’s better..)

• When finding a lower bound, the 
goal is to find the best (largest)  
one possible.



Big-Theta

• Definition: 

• f is Theta(g) if  f is O(g) and f is Omega(g)

• i.e. there are constants c’ and c’’ such that c’g(n)  <= f(n)  <= c”g(n) 

• When we say f is Theta(g) this means that

• f and g have the same order of growth (up to constant factors)

• Another way to compare the order of growth of two functions is to compute their 
limit f/g  as n goes to infinity

• if the limit is a constant c >0 ==>  f = Theta(g)

• Examples: 

• 3n + lg n + 10  is Theta(n) 

• 2n2 + n lg n + 5  is Theta(n2) 

• 3lgn +2 is Theta(lg n) 

• 3n+2, 2n+5, 10n, 1000n are Theta(n)



Using Asymptotic Analysis

• Usually we want to find a theta-bound (i.e. the order of growth)  for the worst-case 
running time

• Examples: 

• worst-case binary search is Theta(lg n)

• worst-case linear search is Theta(n) 

• worst-case find-min in an array is Theta(n) 

• worst-case insertion sort is Theta(n2) 

• worst-case bubble-sort is Theta(n2) 

• It is correct to say that worst-case binary search is  O(lg n), but a Theta-bound is 
better



Using Asymptotic Analysis

• best-case running time < running time < worst-case running time

• Running time is Omega(best-case running time) 

• Running time is O(worst-case running time) 

• Examples: 

• binary search is Theta(1) in the best case

• binary search is Theta(lg n) in the worst case 

• therefore binary search is Omega(1) and O(lg n)

• worst-case binary search is Theta(lg n)

• binary search is O(lg n)

• binary search is Theta(lg n) <---------- NO



Using Asymptotic Analysis

• Suppose we have two algorithms for a problem: 

• Algorithm A  has a running time of O(n) 

• Algorithm B has a running time of O(n2) 

• Which one is better? 



Using Asymptotic Analysis

• Suppose we have two algorithms for a problem: 

• Algorithm A  has a running time of O(n) 

• Algorithm B has a running time of O(n2) 

• Which is better? 

• We do not know!!!  O() just gives us an upper bound. 

• Scenarios: 
•  A is linear, B is quadratic (therefore A is faster)

•  Both are linear   (therefore they are equivalent)
• A is linear, B is logarithmic (therefore B is faster)



• Suppose we have two algorithms for a problem: 

• Algorithm A  has a running time of Theta(n) 

• Algorithm B has a running time of Theta(n2) 

• Which is better?

• A is smaller (faster)

• Theta(n) is better than Theta(n2), etc

• order classes of functions by their oder of growth

• Theta(1) < Theta(lg n)  <  Theta(n)  <  Theta(nlgn) < Theta(n2) < Theta(n3)  < Theta(2n) 

• Cannot distinguish between algorithms in the same class

• two algorithms that are Theta(n) worst-case are equivalent theoretically 

• optimization of constants can be done at implementation-time 

Asymptotic Analysis



Order of growth matters

• Example: 

• Say n = 109 (1 billion elements)

• 10 MHz computer  ==> 1 instruction  takes 10-7 seconds

• Binary search would take 

• Theta(lg n) = lg 109 x 10-7 sec = 30 x 10-7 sec = 3 microsec

• Sequential search would take 

• Theta(n)= 109 x 10-7 sec = 100 seconds

• Finding all pairs of elements would take 

• Theta(n2) = (109)2 x 10-7 sec = 1011 seconds =  3170 years

• Imagine Theta(n3)  

• Imagine Theta(2n) 



Order of growth matters

n lg n n n lg n n^2 n^3 2^n

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,536

32 5 32 160 1,024 32,768 4,294,967,296

64 6 64 384 4,096 262,144 1.8 x 10^19

128 7 128 896 16,384 2,097,152 3.40 x 10^38

256 8 256 2.048 65,536 16,777,216 1.15 x 10^77

512 9 512 4,608 262,144 134,217,728 1.34 x 10^154

1024 10 1024

10242 20 1,048,576
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• Assume we have a 1 GHz computer. 

• This means an instruction takes 1 nanosecond (10-9 seconds). 

• We  have 3 algorithms: 

• A:   400n 

• B    2n2

• C:   2n 

• What is the maximum input size that can be solved with each algorithm  in: 

• 1 second

• 1 minute

• 1 hour

Running time 1 sec 1 min 1 hour

400n

2n2

2n



Exercise

• We have an array X containing a sequence of numbers.  We want to compute another 
array  A such that A[i] represents the average X[0] + X[1] + ... X[i]/ (i+1). 
• A[0] = X[0]

• A[1] = (X[0] + X[1])/ 2

• A[2] = (X[0] + X[1] + X[2]) / 3

• ...

• The first i values of X are referred to as the i-prefix of X.  

X[0] + ... X[i] is called prefix-sum, and A[i]  prefix average. 

• Application:  In Economics. Imagine that X[i] represents the return of a mutual fund 
in year i.  A[i] represents the average return over i years. 

• Write a function that creates, computes and returns the prefix averages. 
double[] computePrefixAverage(double[] X) 

• Analyze your algorithm (worst-case running time). 



Asymptotic Analysis: Overview

• Running time  = number of instructions in the RAM model of computation 

• We want the worst-case running time  as a function of input size

• Find the order of growth (a Theta-bound) of the worst-case running time 

• Common growth rates

Theta(1) < Theta(lg n)  <  Theta(n)  <  Theta(nlgn) < Theta(n2) < Theta(n3)  < Theta(2n) 

• At the algorithm design level, we want to find the  most efficient algorithm in terms 
of growth rate 

• We can optimize constants at the implementation step 



Common running times
• O(lg n)

• binary search 

• O(n)

• linear search 

• O(n-lg-n)

• performing n binary searches in an ordered array 

• sorting

• O(n2) 

• nested loops
• for (i=0; i<n; i++)

for (j=0; j<n; j++) 

//do something

• bubble sort, selection sort, insertion sort

• O(n3)

• nested loops 

• Enumerate all triples of elements 
• e.g. Imagine  cities on a map. Are there 3 cities that no two are not joined by a road?

• Solution: enumerate all subsets of 3 cities.  There are n chose 3 different subsets, which is order n3.


