
csci 210: Data Structures

Program Analysis

Summary

• Summary

• analysis of algorithms

• asymptotic analysis and notation
• big-O

• big-Omega

• big-theta

• commonly used functions

• discrete math refresher

Analysis of algorithms

• Analysis of algorithms and data structure is the major force that drives the design of
solutions.

• there are many solutions to a problem: pick the one that is the most efficient

• how to compare various algorithms? Analyze algorithms.

• Algorithm analysis: analyze the cost of the algorithm

• cost = time: How much time does this algorithm require?

• The primary efficiency measure for an algorithm is time
• all concepts that we discuss for time analysis apply also to space analysis

• cost = space: How much space (i.e. memory) does this algorithm require?

• cost = space + time

• cost = bandwidth (amount of data sent over the internet)

• etc

Analysis of algorithms

• Running time of an algorithm:

• it increases with input size

• on inputs of same size, it can vary from input to input

• it depends on hardware
• CPU speed, hard-disk, caches, bus, etc

• it depends on OS, language, compiler, etc

• Everything else being equal

• we’d like to compare algorithms

• we’d like to study the relationship running time vs. size of input

• How to measure running time of an algorithm?

• 1. experimental studies

• 2. theoretical analysis

Analysis of algorithms

• Experimental analysis

• implement

• chose various input sizes

• for each input size, chose various inputs
• run algorithm

• time

• compute average
• plot

• Limitations

• need to implement the algorithm

• need to implement all algorithms that we want to compare

• need many experiments

• try several platforms

• Advantages

• find the best algorithm in practice

Analysis of algorithms

Input
size

running time

Analysis of algorithms

• We would like to analyze algorithms without having to implement them

• Basically, we would like to be able to look at two algorithms flowcharts and decide
which one is better

===> theoretical analysis

Theoretical analysis

• RAM model of computation

• Assume all operations cost the same

• Assume all data fits in memory

• Running time (efficiency) of an algorithm:

• the number if operations executed by the algorithm

• Does this reflect actual running time?

• multiply nb. of instructions by processor speed
• 1GHz processor ==> 10^9 instructions/second

• Is this accurate?

• Not all instructions take the same...

• Various other effects.

• Overall, it is a very good predictor of running time

Terminology

• Notation: n = size of the input to the problem

• Running time:

• number of operations/instructions executed on an input of size n

• expressed as function of n: f(n)

• For an input of size n, running time may be smaller on some inputs than on others

• Best case running time:

• the smallest number of operations on an input of size n

• Worst-case running time:

• the largest number of operations on an input of size n

• For any n

• best-case running time(n) <= running time(n) <= worst-case running time (n)

• Ideally, want to compute average-case running time

• need to know the distribution of the input

• often assume uniform distribution (all inputs are equally likely), but this may not
be realistic

Examples

• Linear search

• Binary search

• Selection sort

• Insertion sort

• Bubble sort

10

Linear search
//return the position of first occurrence or -1 if not found

int search (double a[], double target) {

for (int i=0; i< a.length; i++)

if (a[i] == target) return i;

//if we got here, no element matched

return -1;

}

• Analysis

• best-case: constant

• worst-case: (order of) n <------------ linear time

• Other examples (of linear time)

• doing one pass through an array of n elements, for e.g. finding min/max/average
in an array, computing sum in an array

int sum = 0

for (int i=0; i< a.length; i++)
sum += a[i]

11

Binary search

//return the index where key is found in a, or -1 if not found

public static int binarySearch(int[] a, int key) {

int left = 0;

int right = a.length-1;

while (left <= right) {

int mid = left + (right-left)/2;

if (key < a[mid]) right = mid-1;

else if (key > a[mid]) left = mid+1;

else return mid;

}

//not found

return -1;

}

• running time:

• best case: constant

• worst-case: lg n <-------------- logarithmic time
Why? input size halves at every iteration of the loop

Math refresher

• The arithmetic sum: 1+ 2 + 3 + 4 + + (n-2) + (n-1) + n = n(n+1)/2

• Proof:

Selection sort

//selection sort:

for (i=0; i < n-1; i++)

minIndex = index-of-smallest element in a[i..n-1]

swap a[i] with a[minIndex]

• Analysis

• index-of-smallest element in a[i..j] takes j-i+1 operations

• n + (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1

• this is n2 <-------------------- quadratic

• best case?

• worst-case?

14

Bubble sort

//assume an array a of n elements: a[0],a[n-1]
for k=1 to n-1

//do a swap pass

for i=0 to n-2

if (a[i] > a[i+1]) then swap a[i], a[i+1]

• Analysis

Best-case?
Worst-case?

15

Insertion sort
//input: array a[] of size n

for i=1 to n-1

//invariant: a[0]...a[i-1] is sorted

shift a[i] to its correct place so that a[0]...a[i] is sorted

• Analysis

• best case

• worst-case

16

Asymptotic analysis

• Focus on the growth of rate of the running time, as a function of n

• That is, ignore the constant factors and the lower-order terms

• Focus on the big-picture

• Example: we’ll say that 2n, 3n, 5n, 100n, 3n+10, n + lg n, are all linear

• Why?

• constants are not accurate anyways

• operations are not equal

• capture the dominant part of the running time

• Notations:

• Big-Oh:
• express upper-bounds

• Big-Omega:
• express lower-bounds

• Big-Theta:
• express tight bounds (upper and lower bounds)

Big-Oh

• Definition:

• f(n), g(n)

• f is O(g) if exists c > 0 and n0 such that f(n) <= cg(n) for all n >= n0

• Big-oh represents an upper bound

• When we say f is O(g) this means that

• f <= g asymptotically

• g is an upper bound for f

• f stays below g as n goes to infinity

• Another way to check is to compute the limit f/g when n goes to infinity

• if this limit is 0 or a constant ==> f is O(g)

• if this limit is infinity ==> g is O(f)

• Examples:

• 2n is O(n), 100n is O(n)

• 10n + 50 is O(n)

• 3n + lg n is O(n)

• lg n is O(log_10 n),

• lg_10 n is O(lg n)

Exercises

• Mark as true or false:

• 100n is O(n)

• n is O(n)

• 15n+7 is O(lg n)

• 15n+7 is O(n2)

• 5n2+4 is O(n)

• 4n2+9n+8 is O(n2)

• 4n2+9n+8 is O(n3)

19

• Definition:

• f(n), g(n)

• f is Omega(g) if exists c>0 such that f(n) >= cg(n) for all n >= n0

• Big-omega represents a lower bound

• When we say f is Omega(g) this means that

• f >= g asymptotically

• g is a lower bound for f

• f stays above g as n goes to infinity

• Another way to check is to compute the limit f/g when n goes to infinity

• if this limit is a constant or infinity ==> f is Omega(g)

• if this limit is 0 ==> g is Omega(f)

• Examples:

• 3nlgn + 2n is Omega(n)

• 2n + 3 is Omega(n)

• 4n2 +3n + 5 is Omega(n)

• 4n2 +3n + 5 is Omega(n2)

• O() and Omega() are symmetrical: f is O(g) <====> g is Omega(f)

Big-Omega

Exercises

• Mark as true or false:

• 100n is Omega(n)

• 2n is Omega(n)

• 15n+7 is Omega(lg n)

• 15n+7 is Omega(n2)

• 5n2+4 is Omega(n)

• 4n2+9n+8 is Omega(n2)

• 4n2+9n+8 is Omega(n3)

21

We want tight bounds

• 2n2 + n lg n +n + 10

• is O(n2) , O(n3) , O(n4) , O(n10)...

• 3n + 5

• is O(n), O(n10), O(n2), ...

• Let’s say you are 2 minutes away
from the top and you don’t know
that. You ask: How much further
to the top?

• Answer 1: at most 3 hours
(True, but not that helpful)

• Answer 2: just a few minutes.

• When finding an upper bound, the
goal is to find the best (smallest)
one possible.

• 2n2 + n lg n +n + 10

• is Omega(1), Omega(lg n),
Omega(n) , Omega(n lg n)

• 3n + 5

• is Omega(1), Omega(lg n) ,
Omega(n)

• You ask at an interview: How much
will my salary be?

• Answer 1: at least 1 dollar a
month (True, but not that
helpful)

• Answer 2: at least 5,000 a
month (that’s better..)

• When finding a lower bound, the
goal is to find the best (largest)
one possible.

Big-Theta

• Definition:

• f is Theta(g) if f is O(g) and f is Omega(g)

• i.e. there are constants c’ and c’’ such that c’g(n) <= f(n) <= c”g(n)

• When we say f is Theta(g) this means that

• f and g have the same order of growth (up to constant factors)

• Another way to compare the order of growth of two functions is to compute their
limit f/g as n goes to infinity

• if the limit is a constant c >0 ==> f = Theta(g)

• Examples:

• 3n + lg n + 10 is Theta(n)

• 2n2 + n lg n + 5 is Theta(n2)

• 3lgn +2 is Theta(lg n)

• 3n+2, 2n+5, 10n, 1000n are Theta(n)

Using Asymptotic Analysis

• Usually we want to find a theta-bound (i.e. the order of growth) for the worst-case
running time

• Examples:

• worst-case binary search is Theta(lg n)

• worst-case linear search is Theta(n)

• worst-case find-min in an array is Theta(n)

• worst-case insertion sort is Theta(n2)

• worst-case bubble-sort is Theta(n2)

• It is correct to say that worst-case binary search is O(lg n), but a Theta-bound is
better

Using Asymptotic Analysis

• best-case running time < running time < worst-case running time

• Running time is Omega(best-case running time)

• Running time is O(worst-case running time)

• Examples:

• binary search is Theta(1) in the best case

• binary search is Theta(lg n) in the worst case

• therefore binary search is Omega(1) and O(lg n)

• worst-case binary search is Theta(lg n)

• binary search is O(lg n)

• binary search is Theta(lg n) <---------- NO

Using Asymptotic Analysis

• Suppose we have two algorithms for a problem:

• Algorithm A has a running time of O(n)

• Algorithm B has a running time of O(n2)

• Which one is better?

Using Asymptotic Analysis

• Suppose we have two algorithms for a problem:

• Algorithm A has a running time of O(n)

• Algorithm B has a running time of O(n2)

• Which is better?

• We do not know!!! O() just gives us an upper bound.

• Scenarios:
• A is linear, B is quadratic (therefore A is faster)

• Both are linear (therefore they are equivalent)
• A is linear, B is logarithmic (therefore B is faster)

• Suppose we have two algorithms for a problem:

• Algorithm A has a running time of Theta(n)

• Algorithm B has a running time of Theta(n2)

• Which is better?

• A is smaller (faster)

• Theta(n) is better than Theta(n2), etc

• order classes of functions by their oder of growth

• Theta(1) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n2) < Theta(n3) < Theta(2n)

• Cannot distinguish between algorithms in the same class

• two algorithms that are Theta(n) worst-case are equivalent theoretically

• optimization of constants can be done at implementation-time

Asymptotic Analysis

Order of growth matters

• Example:

• Say n = 109 (1 billion elements)

• 10 MHz computer ==> 1 instruction takes 10-7 seconds

• Binary search would take

• Theta(lg n) = lg 109 x 10-7 sec = 30 x 10-7 sec = 3 microsec

• Sequential search would take

• Theta(n)= 109 x 10-7 sec = 100 seconds

• Finding all pairs of elements would take

• Theta(n2) = (109)2 x 10-7 sec = 1011 seconds = 3170 years

• Imagine Theta(n3)

• Imagine Theta(2n)

Order of growth matters

n lg n n n lg n n^2 n^3 2^n

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,536

32 5 32 160 1,024 32,768 4,294,967,296

64 6 64 384 4,096 262,144 1.8 x 10^19

128 7 128 896 16,384 2,097,152 3.40 x 10^38

256 8 256 2.048 65,536 16,777,216 1.15 x 10^77

512 9 512 4,608 262,144 134,217,728 1.34 x 10^154

1024 10 1024

10242 20 1,048,576

109

• Assume we have a 1 GHz computer.

• This means an instruction takes 1 nanosecond (10-9 seconds).

• We have 3 algorithms:

• A: 400n

• B 2n2

• C: 2n

• What is the maximum input size that can be solved with each algorithm in:

• 1 second

• 1 minute

• 1 hour

Running time 1 sec 1 min 1 hour

400n

2n2

2n

Exercise

• We have an array X containing a sequence of numbers. We want to compute another
array A such that A[i] represents the average X[0] + X[1] + ... X[i]/ (i+1).
• A[0] = X[0]

• A[1] = (X[0] + X[1])/ 2

• A[2] = (X[0] + X[1] + X[2]) / 3

• ...

• The first i values of X are referred to as the i-prefix of X.

X[0] + ... X[i] is called prefix-sum, and A[i] prefix average.

• Application: In Economics. Imagine that X[i] represents the return of a mutual fund
in year i. A[i] represents the average return over i years.

• Write a function that creates, computes and returns the prefix averages.
double[] computePrefixAverage(double[] X)

• Analyze your algorithm (worst-case running time).

Asymptotic Analysis: Overview

• Running time = number of instructions in the RAM model of computation

• We want the worst-case running time as a function of input size

• Find the order of growth (a Theta-bound) of the worst-case running time

• Common growth rates

Theta(1) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n2) < Theta(n3) < Theta(2n)

• At the algorithm design level, we want to find the most efficient algorithm in terms
of growth rate

• We can optimize constants at the implementation step

Common running times
• O(lg n)

• binary search

• O(n)

• linear search

• O(n-lg-n)

• performing n binary searches in an ordered array

• sorting

• O(n2)

• nested loops
• for (i=0; i<n; i++)

for (j=0; j<n; j++)

//do something

• bubble sort, selection sort, insertion sort

• O(n3)

• nested loops

• Enumerate all triples of elements
• e.g. Imagine cities on a map. Are there 3 cities that no two are not joined by a road?

• Solution: enumerate all subsets of 3 cities. There are n chose 3 different subsets, which is order n3.

