csci 210: Data Structures

Program Analysis

Summary

- Summary
- analysis of algorithms
- asymptotic analysis and notation
- big-O
- big-Omega
- big-theta
- commonly used functions
- discrete math refresher

Analysis of algorithms

- Analysis of algorithms and data structure is the major force that drives the design of solutions.
- there are many solutions to a problem: pick the one that is the most efficient
- how to compare various algorithms? Analyze algorithms.
- Algorithm analysis: analyze the cost of the algorithm
- cost = time: How much time does this algorithm require?
- The primary efficiency measure for an algorithm is time
- all concepts that we discuss for time analysis apply also to space analysis
- cost = space: How much space (i.e. memory) does this algorithm require?
- cost = space + time
- cost = bandwidth (amount of data sent over the internet)
- etc

Analysis of algorithms

- Running time of an algorithm:
- it increases with input size
- on inputs of same size, it can vary from input to input
- it depends on hardware
- CPU speed, hard-disk, caches, bus, etc
- it depends on OS, language, compiler, etc
- Everything else being equal
- we'd like to compare algorithms
- we'd like to study the relationship running time vs. size of input

Analysis of algorithms

- How to measure running time of an algorithm?
- 1. experimental studies
- 2. theoretical analysis

Analysis of algorithms

- Experimental analysis
- implement
- chose various input sizes
- for each input size, chose various inputs
- run algorithm
- time
- compute average
- plot
- Limitations
running time

- need to implement all algorithms that we want to compare
- need many experiments
- try several platforms
- Advantages
- find the best algorithm in practice

Analysis of algorithms

- We would like to analyze algorithms without having to implement them
- Basically, we would like to be able to look at two algorithms flowcharts and decide which one is better
===> theoretical analysis

Theoretical analysis

- RAM model of computation
- Assume all operations cost the same
- Assume all data fits in memory
- Running time (efficiency) of an algorithm:
- the number if operations executed by the algorithm
- Does this reflect actual running time?
- multiply nb. of instructions by processor speed
- 1 GHz processor $==>10^{\wedge} 9$ instructions/second
- Is this accurate?
- Not all instructions take the same...
- Various other effects.
- Overall, it is a very good predictor of running time

Terminology

- Notation: $n=$ size of the input to the problem
- Running time:
- number of operations/instructions executed on an input of size n
- expressed as function of n : $f(n)$
- For an input of size n, running time may be smaller on some inputs than on others
- Best case running time:
- the smallest number of operations on an input of size n
- Worst-case running time:
- the largest number of operations on an input of size n
- For any n
- best-case running time $(n)<=$ running time $(n)<=$ worst-case running time (n)
- Ideally, want to compute average-case running time
- need to know the distribution of the input
- often assume uniform distribution (all inputs are equally likely), but this may not be realistic

Examples

- Linear search
- Binary search
- Selection sort
- Insertion sort
- Bubble sort

Linear search

```
//return the position of first occurrence or -1 if not found
int search (double a[], double target) {
    for (int i=0; i< a.length; i++)
        if (a[i] == target) return i;
    //if we got here, no element matched
    return -1;
}
```

- Analysis
- best-case: constant
- worst-case: (order of) n <----------- linear time
- Other examples (of linear time)
- doing one pass through an array of n elements, for e.g. finding $\mathrm{min} / \mathrm{max} / a v e r a g e$ in an array, computing sum in an array
int sum $=0$
for (int $i=0 ; i<a . l e n g t h ; i++$)
sum $+=a[i]$

Binary search

```
//return the index where key is found in a, or -1 if not found
public static int binarySearch(int[] a, int key) {
    int left = 0;
    int right = a.length-1;
    while (left <= right) {
        int mid = left + (right-left)/2;
        if (key < a[mid]) right = mid-1;
        else if (key > a[mid]) left = mid+1;
        else return mid;
    }
    //not found
    return -1;
}
```

- running time:
- best case: constant
- worst-case: $\lg n$ <-------------- logarithmic time

Why? input size halves at every iteration of the loop

Math refresher

- The arithmetic sum: $1+2+3+4+\ldots \ldots+(n-2)+(n-1)+n=n(n+1) / 2$
- Proof:

Selection sort

```
//selection sort:
for (i=0; i < n-1; i++)
    minIndex = index-of-smallest element in a[i..n-1]
    swap a[i] with a[minIndex]
```

- Analysis
- index-of-smallest element in $a[i . . j]$ takes $j-i+1$ operations
- $n+(n-1)+(n-2)+(n-3)+\ldots+3+2+1$
- this is n^{2} <---------------------- quadratic
- best case?
- worst-case?

Bubble sort

```
//assume an array a of n elements: a[0], ....a[n-1]
for k=1 to n-1
//do a swap pass
for i=0 to n-2
    if (a[i] > a[i+1]) then swap a[i], a[i+1]
```

- Analysis

Best-case?
Worst-case?

Insertion sort

//input: array a[] of size n
for $i=1$ to $n-1$
//invariant: a[0]...a[i-1] is sorted
shift a[i] to its correct place so that a[0]...a[i] is sorted

- Analysis
- best case
- worst-case

Asymptotic analysis

- Focus on the growth of rate of the running time, as a function of n
- That is, ignore the constant factors and the lower-order terms
- Focus on the big-picture
- Example: we'll say that $2 n, 3 n, 5 n, 100 n, 3 n+10, n+\lg n$, are all linear
- Why?
- constants are not accurate anyways
- operations are not equal
- capture the dominant part of the running time
- Notations:
- Big-Oh:
- express upper-bounds
- Big-Omega:
- express lower-bounds
- Big-Theta:
- express tiaht bounds (upper and lower bounds)

Big-Oh

- Definition:
- $f(n), g(n)$
- f is $O(g)$ if exists $c>0$ and n_{0} such that $f(n)<=c g(n)$ for all $n>=n_{0}$
- Big-oh represents an upper bound
- When we say f is $O(g)$ this means that
- $f<=g$ asymptotically
- g is an upper bound for f
- f stays below g as n goes to infinity
- Another way to check is to compute the limit f/g when n goes to infinity
- if this limit is 0 or a constant $\Rightarrow f$ is $O(g)$
- if this limit is infinity $==>g$ is $O(f)$
- Examples:
- $2 n$ is $O(n), 100 n$ is $O(n)$
- $10 n+50$ is $O(n)$
- $3 n+\lg n$ is $O(n)$
- $\lg n$ is $O\left(\log _{1} 10 n\right)$,
- $\lg _10 n$ is $O(\lg n)$

Exercises

- Mark as true or false:
- 100 n is $O(\mathrm{n})$
- n is $O(\mathrm{n})$
- $15 n+7$ is $O(\lg n)$
- $15 n+7$ is $O\left(n^{2}\right)$
- $5 n^{2}+4$ is $O(n)$
- $4 n^{2}+9 n+8$ is $O\left(n^{2}\right)$
- $4 n^{2}+9 n+8$ is $O\left(n^{3}\right)$

Big-Omega

- Definition:
- $f(n), g(n)$
- f is Omega(g) if exists $c>0$ such that $f(n)>=c g(n)$ for all $n>=n 0$
- Big-omega represents a lower bound
- When we say f is Omega(g) this means that
- $f>=g$ asymptotically
- g is a lower bound for f
- f stays above g as n goes to infinity
- Another way to check is to compute the limit f/g when n goes to infinity
- if this limit is a constant or infinity $=\Rightarrow f$ is Omega(g)
- if this limit is $0 \Rightarrow g$ is Omega(f)
- Examples:
- $3 n \operatorname{lgn}+2 n$ is Omega(n)
- $2 n+3$ is Omega (n)
- $4 n^{2}+3 n+5$ is Omega(n)
- $4 n^{2}+3 n+5$ is Omega $\left(n^{2}\right)$
- $O()$ and Omega() are symmetrical: f is $O(g)$ <====> g is Omega(f)

Exercises

- Mark as true or false:
- 100 n is Omega(n)
- 2 n is Omega(n)
- $15 n+7$ is Omega $(\lg n)$
- $15 n+7$ is Omega $\left(n^{2}\right)$
- $5 n^{2}+4$ is Omega(n)
- $4 n^{2}+9 n+8$ is Omega $\left(n^{2}\right)$
- $4 n^{2}+9 n+8$ is Omega $\left(n^{3}\right)$

We want tight bounds

- $2 n^{2}+n \lg n+n+10$
- is $O\left(n^{2}\right), O\left(n^{3}\right), O\left(n^{4}\right), O\left(n^{10}\right) \ldots$
- $3 n+5$
- is $O(n), O\left(n^{10}\right), O\left(n^{2}\right), \ldots$
- Let's say you are 2 minutes away from the top and you don't know that. You ask: How much further to the top?
- Answer 1: at most 3 hours (True, but not that helpful)
- Answer 2: just a few minutes.
- When finding an upper bound, the goal is to find the best (smallest) one possible.
- $2 n^{2}+n \lg n+n+10$
- is Omega(1), Omega($\lg n)$, Omega(n), Omega($n \lg n$)
- $3 n+5$
- is Omega(1), Omega($\lg n)$, Omega(n)
- You ask at an interview: How much will my salary be?
- Answer 1: at least 1 dollar a month (True, but not that helpful)
- Answer 2: at least 5,000 a month (that's better..)
- When finding a lower bound, the goal is to find the best (largest) one possible.

Big-Theta

-

Definition:

- f is Theta (g) if f is $O(g)$ and f is Omega(g)
- i.e. there are constants c^{\prime} and $c^{\prime \prime}$ such that $c^{\prime} g(n)<=f(n)<=c^{\prime \prime} g(n)$
- When we say f is Theta(g) this means that
- f and g have the same order of growth (up to constant factors)
- Another way to compare the order of growth of two functions is to compute their limit f / g as n goes to infinity
- if the limit is a constant $c>0 \Rightarrow f=$ Theta(g)
- Examples:
- $3 n+\lg n+10$ is Theta(n)
- $2 n^{2}+n \lg n+5$ is Theta $\left(n^{2}\right)$
- $3 \lg n+2$ is Theta $(\lg n)$
- $3 n+2,2 n+5,10 n, 1000 n$ are Theta(n)

Using Asymptotic Analysis

- Usually we want to find a theta-bound (i.e. the order of growth) for the worst-case running time
- Examples:
- worst-case binary search is Theta(lg n)
- worst-case linear search is Theta(n)
- worst-case find-min in an array is Theta(n)
- worst-case insertion sort is Theta $\left(n^{2}\right)$
- worst-case bubble-sort is Theta($\left.n^{2}\right)$
- It is correct to say that worst-case binary search is $O(\lg n)$, but a Theta-bound is better

Using Asymptotic Analysis

- best-case running time < running time < worst-case running time
- Running time is Omega(best-case running time)
- Running time is O (worst-case running time)
- Examples:
- binary search is Theta(1) in the best case
- binary search is Theta $(\lg n)$ in the worst case
- therefore binary search is Omega(1) and $O(\lg n)$
- worst-case binary search is Theta(lg n)
- binary search is $O(\lg n)$
- binary search is Theta(lgn) <---------- NO

Using Asymptotic Analysis

- Suppose we have two algorithms for a problem:
- Algorithm A has a running time of $O(n)$
- Algorithm B has a running time of $O\left(n^{2}\right)$
- Which one is better?

Using Asymptotic Analysis

- Suppose we have two algorithms for a problem:
- Algorithm A has a running time of $O(n)$
- Algorithm B has a running time of $O\left(n^{2}\right)$
- Which is better?
- We do not know!!! $O()$ just gives us an upper bound.
- Scenarios:
- A is linear, B is quadratic (therefore A is faster)
- Both are linear (therefore they are equivalent)
- A is linear, B is logarithmic (therefore B is faster)

Asymptotic Analysis

- Suppose we have two algorithms for a problem:
- Algorithm A has a running time of Theta(n)
- Algorithm B has a running time of Theta($\left.n^{2}\right)$
- Which is better?
- A is smaller (faster)
- Theta(n) is better than Theta $\left(n^{2}\right)$, etc
- order classes of functions by their oder of growth
- Theta(1) < Theta(Ig $n)<\operatorname{Theta}(n)<\operatorname{Theta}(n l g n)<\operatorname{Theta}\left(n^{2}\right)<\operatorname{Theta}\left(n^{3}\right)<\operatorname{Theta}\left(2^{n}\right)$
- Cannot distinguish between algorithms in the same class
- two algorithms that are Theta(n) worst-case are equivalent theoretically
- optimization of constants can be done at implementation-time

Order of growth matters

- Example:
- Say $n=10^{9}$ (1 billion elements)
- 10 MHz computer $\Rightarrow=1$ instruction takes 10^{-7} seconds
- Binary search would take
- Theta($\lg \mathrm{n})=\lg 10^{9} \times 10^{-7} \mathrm{sec}=30 \times 10^{-7} \mathrm{sec}=3 \mathrm{microsec}$
- Sequential search would take
- Theta(n) $=10^{9} \times 10^{-7} \mathrm{sec}=100$ seconds
- Finding all pairs of elements would take
- Theta $\left(n^{2}\right)=\left(10^{9}\right)^{2} \times 10^{-7}$ sec $=10^{11}$ seconds $=3170$ years
- Imagine Theta(n^{3})
- Imagine Theta(2^{n})

Order of growth matters

n	$\lg \mathrm{n}$	n	$\mathrm{n} \lg \mathrm{n}$	$\mathrm{n}^{\wedge} 2$	$\mathrm{n}^{\wedge} 3$	$2^{\wedge} \mathrm{n}$
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	$4,294,967,296$
64	6	64	384	4,096	262,144	$1.8 \times 10^{\wedge} 19$
128	7	128	896	16,384	$2,097,152$	$3.40 \times 10^{\wedge} 38$
256	8	256	2.048	65,536	$16,777,216$	$1.15 \times 10^{\wedge} \not 7^{\prime} 7$
512	10	1024		262,144	$134,217,728$	$1.34 \times 10^{\wedge} 154$
1024	20	$1,048,576$				
1024^{2}	7					
10^{9}						

- Assume we have a 1 GHz computer.
- This means an instruction takes 1 nanosecond (10^{-9} seconds).
- We have 3 algorithms:
- A: 400n
- B $2 n^{2}$
- C: 2^{n}
- What is the maximum input size that can be solved with each algorithm in:
- 1 second
- 1 minute
- 1 hour

Running time	1 sec	1 min	1 hour
400 n			
$2 \mathrm{n}^{2}$			
2^{n}			

Exercise

- We have an array X containing a sequence of numbers. We want to compute another array A such that $A[i]$ represents the average $X[0]+X[1]+\ldots X[i] /(i+1)$.
- $A[0]=x[0]$
- $A[1]=(x[0]+x[1]) / 2$
- $A[2]=(X[0]+X[1]+X[2]) / 3$
- The first i values of X are referred to as the i-prefix of X. $X[0]+\ldots X[i]$ is called prefix-sum, and $A[i]$ prefix average.
- Application: In Economics. Imagine that $X[i]$ represents the return of a mutual fund in year i . A[i] represents the average return over i years.
- Write a function that creates, computes and returns the prefix averages.

```
    double[] computePrefixAverage(double[] X)
```

- Analyze your algorithm (worst-case running time).

Asymptotic Analysis: Overview

- Running time $=$ number of instructions in the RAM model of computation
- We want the worst-case running time as a function of input size
- Find the order of growth (a Theta-bound) of the worst-case running time
- Common growth rates

Theta(1) < Theta(lg $n)<T h e t a(n)<T h e t a(n \operatorname{lgn})<T h e t a(n 2)<T h e t a(n 3)<T h e t a(2 n)$

- At the algorithm design level, we want to find the most efficient algorithm in terms of growth rate
- We can optimize constants at the implementation step

Common running times

- $O(\lg n)$
- binary search
- $O(n)$
- linear search
- $O(n-\lg -n)$
- performing n binary searches in an ordered array
- sorting
- $O\left(n^{2}\right)$
- nested loops
- for (i=0; i<n; i++)

```
    for (j=0; j<n; j++)
```

 //do something
 - bubble sort, selection sort, insertion sort
- $O\left(n^{3}\right)$
- nested loops
- Enumerate all triples of elements
- e.g. Imagine cities on a map. Are there 3 cities that no two are not joined by a road?
- Solution: enumerate all subsets of 3 cities. There are n chose 3 different subsets, which is order n^{3}.

