csci 210: Data Structures

Program Analysis




e Summary

® analysis of algorithms

® asymptotic analysis and notation
® big-O
® big-Omega
® big-theta

® commonly used functions

® discrete math refresher




Analysis of algorithms

Analysis of algorithms and data structure is the major force that drives the design of
solutions.

® there are many solutions to a problem: pick the one that is the most efficient

® how to compare various algorithms? Analyze algorithms.

Algorithm analysis: analyze the cost of the algorithm
cost = fime:  How much time does this algorithm require?

The primary efficiency measure for an algorithm is time
® all concepts that we discuss for time analysis apply also to space analysis

cost = space: How much space (i.e. memory) does this algorithm require?
cost = space + time
cost = bandwidth (amount of data sent over the internet)

etc




Analysis of algorithms

e Running time of an algorithm:
it increases with input size
on inputs of same size, it can vary from input to input

it depends on hardware
® CPU speed, hard-disk, caches, bus, etfc

it depends on OS, language, compiler, etc

e Everything else being equal
® wed like to compare algorithms

® wed like to study the relationship running time vs. size of input




Analysis of algorithms

e How to measure running time of an algorithm?
® 1. experimental studies

® 2. theoretical analysis




Analysis of algorithms

e Experimental analysis

implement running time
A

chose various input sizes

for each input size, chose various inputs

® run algorithm

time

°
® compute average
°

plot

e Limitations

® need to implement the algorithm
® need to implement all algorithms that we want tfo compare
® need many experiments
® try several platforms
e Advantages

® find the best algorithm in practice




Analysis of algorithms

We would like to analyze algorithms without having to implement them

Basically, we would like to be able to look at two algorithms flowcharts and decide
which one is better

===> theoretical analysis




Theoretical analysis

RAM model of computation
® Assume all operations cost the same

® Assume all data fits in memory

Running time (efficiency) of an algorithm:

® the number if operations executed by the algorithm

Does this reflect actual running time?

® multiply nb. of instructions by processor speed

® 1GHz processor ==> 1079 instructions/second

Is this accurate?
® Not all instructions take the same...
® Various other effects.

® Overall, it is a very good predictor of running time



Terminology

Notation: n = size of the input to the problem
Running time:
® number of operations/instructions executed on an input of size n

® expressed as function of n: f(n)

For an input of size n, running time may be smaller on some inputs than on others
Best case running time:

® the smallest number of operations on an input of size n
Worst-case running time:

® the largest number of operations on an input of size n

For any n

® best-case running time(n) <= running time(n) <= worst-case running time (n)




Linear search

Binary search

Selection sort
Insertion sort

Bubble sort




Linear search

//return the position of first occurrence or -1 if not found
int search (double a[], double target) ({
for (int i=0; i< a.length; i++)
if (a[i] == target) return 1i;
//if we got here, no element matched

return -1;
I
Analysis
® best-case: constant

® worst-case: (order of ) n linear time

Other examples (of linear time)

® doing one pass through an array of n elements, for e.g. finding min/max/average
in an array, computing sum in an array

intf sum =0
for (int i=0; i< a.length; i++)

sum += a[i]




Binary search

//return the index where key is found in a, or -1 if not found
public static int binarySearch(int[] a, int key) {
int left = 0;
int right = a.length-1;
while (left <= right) ({
int mid = left + (right-left)/2;
if (key < a[mid]) right = mid-1;
else if (key > a[mid]) left = mid+1;

else return mid;

}

//not found

return -1;
}
running time:
® best case: constant

® worst-case: Ig n logarithmic time

Why? input size halves at every iteration of the loop




Math refresher

e The arithmetic sum: 1+ 2 + 3 + 4 + + (n-2) + (n-1) + n = n(n+1)/2




Selection sort

//selection sort:
for (1i=0; 1 < n-1; i++)
minIndex = index-of-smallest element in a[i..n-1]

swap a[i] with a[minIndex]

® Analysis
index-of-smallest element in a[i..j] takes j-i+1 operations
n+((m-1)+M-2)+M-3)+..+3+2+1

this is n? quadratic

best case?

worst-case?




Bubble sort

//assume an array a of n elements: a[0], ....a[n-1]
for k=1 to n-1

//do a swap pass
for i=0 to n-2

if (a[i] > a[i+l]) then swap a[i], a[i+l]

® Analysis
Best-case?

Worst-case?




Insertion sort

//input: array a[] of size n
for i=1 to n-1
//invariant: a[0]...a[i-1] is sorted

shift a[i] to its correct place so that a[0]...a[i1] is sorted

Analysis
® best case

® worst-case




Asymptotic analysis

Focus on the growth of rate of the running time, as a function of n
That is, ignore the constant factors and the lower-order terms
Focus on the big-picture

Example: we’ll say that 2n, 3n, 5n, 100n, 3n+10, n + Ig n, are all linear

Why?
® constants are not accurate anyways
® operations are not equal

® capture the dominant part of the running time

Notations:
® Big-Oh:

® express upper-bounds
® Big-Omega:

® express lower-bounds
® Big-Theta:

® express tiaht bounds (upper and lower bounds)




Big-Oh

Definition:
e f(n), g(n)
e fis O(g) if exists ¢ > 0 and no such that f(n) <= cg(n) for all n >=no

Big-oh represents an upper bound
When we say f is O(g) this means that
® f <= g asymptotically
® g is an upper bound for f
® f stays below g as n goes to infinity
Another way to check is to compute the limit f/g when n goes to infinity
® if this limit is O or a constant ==> f is O(qg)
® if this limit is infinity ==> g is O(f)
Examples:
2n is O(n), 100n is O(n)
10n + 50 is O(n)
3n + lg nis O(n)
lg n is O(log_10 n),
lg_10 n is O(lg n)




Exercises

e Mark as true or false:

100n is O(n)

n is O(n)

15n+7 is O(lg n)

15n+7 is O(n?)

5n2+4 is O(n)

4n%+9n+8 is O(n?)

4n%+9n+8 is O(n3)




Big-Omega

Definition:
o f(n), g(n)
® f is Omega(g) if exists ¢>0 such that f(n) >= cg(n) for all n >= nO

Big-omega represents a lower bound
When we say f is Omega(g) this means that
e f >= g asymptotically
® g is a lower bound for f
® f stays above g as n goes to infinity
Another way to check is to compute the limit f/g when n goes to infinity
e if this limit is a constant or infinity ==> f is Omega(qg)
® if this limit is O ==> g is Omegal(f)
Examples:
3nign + 2n is Omega(n)
2n + 3 is Omega(n)
4n? +3n + 5 is Omega(n)
4n% +3n + 5 is Omega(n?)

O() and Omega() are symmetrical: fis O(g) <====> g is Omega(f)




Exercises

e Mark as true or false:

100n is Omega(n)

2n is Omega(n)

15n+7 is Omega(lg n)

15n+7 is Omega(n?)

5n2+4 is Omega(n)

4n%+9n+8 is Omega(n?)

4n%+9n+8 is Omega(n?)




We want tight bounds

2n2 + nlgn+n + 10

® is O(n?), O(n3), O(n*), O(n')...

3n + 5
® is O(n), O(n'9), O(n?), ...

Let's say you are 2 minutes away
from the top and you dont know
that.  You ask: How much further
to the top?

® Answer 1: at most 3 hours
(True, but not that helpful)

® Answer 2: just a few minutes.

When finding an upper bound, the
goal is to find the best (smallest)
one possible.

2n2+ nlgn+n + 10

® is Omega(l), Omega(lg n),
Omega(n) , Omega(n lg n)

3n + 5

® is Omega(l), Omega( lg n) ,
Omega(n)

You ask at an interview: How much
will my salary be?

e Answer 1l: at least 1 dollar a
month (True, but not that
helpful)

® Answer 2: at least 5,000 a
month (that's better..)

When finding a lower bound, the
goal is to find the best (largest)
one possible.




Big-Theta

Definition:
® f is Theta(g) if f is O(g) and f is Omega(g)

® i.e. there are constants ¢’ and c¢” such that c'g(n) <= f(n) <= c”g(n)

When we say f is Theta(g) this means that

® f and g have the same order of growth (up to constant factors)

Another way to compare the order of growth of two functions is fo compute their
limit f/g as n goes to infinity

® if the limit is a constant ¢ >0 ==> f = Theta(g)

Examples:
3n + lg n + 10 is Theta(n)
2n2 + nlgn + 5 is Theta(n?)
3lgn +2 is Theta(lg n)
3n+2, 2n+5, 10n, 1000n are Theta(n)




Using Asymptotic Analysis

e Usually we want to find a theta-bound (i.e. the order of growth) for the worst-case
running time

e Examples:
worst-case binary search is Theta(lg n)
worst-case linear search is Theta(n)
worst-case find-min in an array is Theta(n)
worst-case insertion sort is Theta(n?)

worst-case bubble-sort is Theta(n?)

e It is correct to say that worst-case binary search is O(lg n), but a Theta-bound is
better




Using Asymptotic Analysis

® best-case running time < running time < worst-case running fime
® Running time is Omega(best-case running time)

® Running time is O(worst-case running time)

e Examples:
binary search is Theta(l) in the best case
binary search is Theta(lg n) in the worst case

therefore binary search is Omega(l) and O(lg n)

worst-case binary search is Theta(lg n)
binary search is O(lg n)

binary search is Theta(lg n) <




Using Asymptotic Analysis

e Suppose we have two algorithms for a problem:
® Algorithm A has a running time of O(n)

® Algorithm B has a running time of O(n?)

e Which one is better?




Using Asymptotic Analysis

e Suppose we have two algorithms for a problem:
® Algorithm A has a running time of O(n)

® Algorithm B has a running time of O(n?)

e Which is better?
® We do not know!!! O() just gives us an upper bound.

® Scenarios:

® A is linear, B is quadratic (therefore A is faster)
® Both are linear (therefore they are equivalent)
® A is linear, B is logarithmic (therefore B is faster)




Asymptotic Analysis

e Suppose we have two algorithms for a problem:
® Algorithm A has a running time of Theta(n)

® Algorithm B has a running time of Theta(n?)

e Which is better?
® A is smaller (faster)
® Theta(n) is better than Theta(n?), etc

order classes of functions by their oder of growth

Theta(l) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n?) < Theta(n3) < Theta(2")

Cannot distinguish between algorithms in the same class

® two algorithms that are Theta(n) worst-case are equivalent theoretically

® optimization of constants can be done at implementation-time




Order of growth matters

e Example:
Say n = 10° (1 billion elements)
10 MHz computer ==>1 instruction takes 10-7 seconds
Binary search would take
® Theta(lg n) = Ilg 10° x 107 sec = 30 x 107" sec = 3 microsec
Sequential search would take

® Theta(n)= 10° x 107 sec = 100 seconds

Finding all pairs of elements would take

® Theta(n?) = (10%)? x 1077 sec = 10" seconds = 3170 years

Imagine Theta(n?)

Imagine Theta(2")




Order of growth matters

n"2

n™3

2 n

64

512

256

256

4,096

65,536

32

1,024

32,768

4,294,967,296

64

4,096

262,144

1.8 x 10*19

128

16,384

2,097,152

3.40 x 10738

256

65,536

16,777,216

1.15x 10777

512

262,144

134,217,728

1.34x 107154

1024

1,048,576




Assume we have a 1 GHz computer.

This means an instruction takes 1 nanosecond (10-° seconds).

We have 3 algorithms:
400n
2n?

2n

What is the maximum input size that can be solved with each algorithm in:

® 1 second

| Running time i
S ute 1 sec 1 min 1 hour

® 1| hour
400n

2n?




Exercise

We have an array X containing a sequence of numbers. We want to compute another
array A such that A[i] represents the average X[0] + X[1] + ... X[i]/ (i+1).

® A[0] = X[0]

® A[l] = (X[0] + X[1])/ 2

® A[2] = (X[O0] + X[1] + X[2]) / 3

The first i values of X are referred to as the i-prefix of X.

X[0] + ... X[i] is called prefix-sum, and A[i] prefix average.

Application: In Economics. Imagine that X[i] represents the return of a mutual fund
in year i. Ali] represents the average return over i years.

Write a function that creates, computes and returns the prefix averages.

double[] computePrefixAverage(double[] X)

Analyze your algorithm (worst-case running time).




Asymptotic Analysis: Overview

Running time = number of instructions in the RAM model of computation

We want the worst-case running time as a function of input size

Find the order of growth (a Theta-bound) of the worst-case running time

Common growth rates

Theta(l) < Theta(lg n) < Theta(n) < Theta(nlgn) < Theta(n2) < Theta(n3) < Theta(2n)

At the algorithm design level, we want to find the most efficient algorithm in terms
of growth rate

We can optimize constants at the implementation step




Common running times

O(lg n)
® binary search
O(n)
® linear search
O(n-lg-n)
® performing n binary searches in an ordered array
® sorting
O(n?)
® nested loops
BEECTEN(1=0; i<n; i++)
for (j=0; j<n; j++)
//do something

® bubble sort, selection sort, insertion sort
O(n3)
® nested loops

® Enumerate all triples of elements

® e.g. Imagine cities on a map. Are there 3 cities that no two are not joined by a road?

® Solution: enumerate all subsets of 3 cities. There are n chose 3 different subsets, which is order n3.




