
csci 210: Data Structures

Maps and Hash Tables

Summary

• Topics

• the Map ADT

• hash tables and hashing

Map ADT

• A Map is an abstract data structure (ADT)
• it stores key-value (k,v) pairs
• there cannot be duplicate keys

• Maps are useful in situations where a key can be viewed as a unique identifier for the object
• the key is used to decide where to store the object in the structure.

• Maps are sometimes called associative arrays

Map ADT
• size()
• isEmpty()
• get(k):

• if M contains an entry with key k, return it; else return null
• put(k,v):

• if M does not have an entry with key k, add entry (k,v) and return null
• else replace existing value of entry with v and return the old value

• remove(k):
• remove entry (k,*) from M

this can be viewed as searching for key k

this can be viewed as inserting key k

this can be viewed as deleting key k

Java.util.Map

• check out the interface

• additional handy methods
• putAll
• entrySet
• containsValue
• containsKey

Map example
(k,v) key=integer, value=letter

• put(5,A)

• put(7,B)

• put(2,C)

• put(8,D)

• put(2,E)

• get(7)

• get(4)

• get(2)

• remove(5)

• remove(2)

• get(2)

M={}

M={(5,A)}

M={(5,A), (7,B)}

M={(5,A), (7,B), (2,C)}

M={(5,A), (7,B), (2,C), (8,D)}

M={(5,A), (7,B), (2,E), (8,D)}

return null

return B

return E

M={(7,B), (2,E), (8,D)}

M={(7,B), (8,D)}

return null

Map example
(k,v) key=string, value=string

• put(“Dan”, <Dan’s favorite tune>)

• put(“John”, <John’s favorite song>)

• put<Helen, <Helen’s favorite song>)

• ...

• get (“Dan”)

• get (“Helen”)

Example

• Let’s say you want to implement a language dictionary. That is, you want to store words and their
definition. You want to insert words to the dictionary, and retrieve the definition given a word.

• Options:
• vector
• linked list
• binary search tree
• map

• The map will store (word, definition of word) pairs.
• key = word

• note: words are unique
• value = definition of word
• get(word)

• returns the definition if the word is in dictionary
• returns null if the word is not in dictionary

Class-work

• Write a program that reads from the user the name of a text file, counts the word frequencies of all
words in the file, and outputs a list of words and their frequency.

• e.g. text file: article, poem, science, etc

• Questions:
• Think in terms of a Map data structure that associates keys to values.
• What will be your <key-value> pairs?

• Sketch the main loop of your program.

Map Implementations

• Arrays (Vector, ArrayList)
• Linked-list
• Binary search trees
• Hash tables

A LinkedList implementation of Maps

• store the (k,v) pairs in a doubly linked list

• get(k)
• hop through the list until find the element with key k

• put(k,v)
• Node x = get(k)
• if (x != null)

• replace the value in x with v

• else create a new node(k,v) and add it at the front

• remove(k)
• Node x = get(k)
• if (x == null) return null
• else remove node x from the list
• Note: why doubly-linked? need to delete at an arbitrary position

• Analysis:
• assume a map with n elements

Map Implementations

• Linked-list:
• get/search, put/insert, remove/delete: O(n)

• Binary search trees <--------- we’ll talk about this later
• search, insert, delete: O(n) if not balanced
• O(lg n) if balanced BST

• Hash tables:
• we’ll see that (under some assumptions) search, insert, delete: O(1)

Hashing

• A completely different approach to searching from the comparison-based methods (binary search,
binary search trees)

• hashing tries to reference an element in a table directly based on its key (rather than
navigating through a dictionary data structure comparing the search key with the elements)

• hashing transforms a key into a table address

Hashing

• If the keys were integers in the range 0 to 99
• The simplest idea:

• store keys in an array H[0..99]

• H initially empty
• put(k, value)

• store <k, value> in H[k]

• get(k)
• check if H[K] is empty

...

direct addressing:

Issues:
 - This works if keys are integers in a small range
 - Space may be wasted is H not full

0 1 2 3 4 ...

store the object
with key k in H[k]

k

Hashing

• Hashing has 2 components
• the hash table: an array A of size N

• Can think of each entry as a bucket (a bucket array)

• a hash function: maps each key to a bucket
• h is a function : {all possible keys} ----> {0, 1, 2, ..., N-1}
• key k is stored in bucket h(k)

• The size of the table N and the hash function are decided by the user
•

A ...

0 1 2 3 4 5 6 8

bucket i stores all keys with h(k) =i

Example

• keys: integers
• chose N = 10
• chose h(k) = k % 10

• [k % 10 is the remainder of k/10]

• add (2,*), (13,*), (15,*), (88,*), (2345,*), (100,*)

• Collision: two keys that hash to the same value
• e.g. 15, 2345 hash to slot 5

• Note: if we were using direct addressing: N = 2^32. Unfeasible.

0 1 2 3 4 5 6 7 8 9

Hashing

The user needs to chose N and the hash function

• h : {universe of all possible keys} ----> {0,1,2,...,N-1}
• The keys need not be integers

• e.g. strings: define a hash function that maps strings to integers
• The universe of all possible keys need not be small

• e.g. strings

Hashing

The user needs to chose N and the hash function

• h : {universe of all possible keys} ----> {0,1,2,...,N-1}

• Hashing is an example of space-time trade-off:
• if there were no memory(space) limitation, simply store a huge table

• O(1) search/insert/delete and a lot of space
• if there were no time limitation, use a linked list and search sequentially

• O(n) search/insert/delete and O(n) space

• Hashing: use a reasonable amount of memory and strike a balance space-time
• adjust hash table size

• Under some assumptions, hashing supports insert, delete and search in in O(1) time and O(n) space

Hashing

• Notation:
• U = the universe of keys

• e.g. U = set of all integers

• |U| = the size of the universe of keys
• e.g. |U| = 2^32

• N = hash table size

• n = number of entries
• note: n may be unknown beforehand

Collisions

• Collision: two keys that hash to the same value

• Collision handling: Decide how to handle when two kets hash to the same address

• Note: if n > N there must be collisions

• Collision with chaining
• bucket arrays

• Collision with probing
• linear probing
• quadratic probing
• double hashing

Collisions with chaining
• Store all elements that hash to the same entry in a linked list (array/vector)

• Can chose to store the lists in sorted order or not
• Insert(k)

• insert k in the linked list of h(k)
• Search(k)

• search in the linked list of h(k)
• Delete(k)

• find and delete k from the linked list of h(k)

A ...

0 1 2 3 4 5 6 8

bucket i stores all keys with h(k) =i

Collisions with chaining

• Pros:
• can handle arbitrary number of collisions as there is no cap on the list size
• don’t need to guess n ahead: if N is smaller than n, the elements will be chained

• Cons: space waste
• use additional space in addition to the hash table
• if N is too large compared to n, part of the hash table may be empty

• Choosing N: space-time tradeoff
• Rule of thumb:

• chose N as 1/5 to 1/10 of the number of keys that we expect in the table, so that keys are
expected to have about 10 elements each. Keep lists unsorted.

A ...

0 1 2 3 4 5 6 8

bucket i stores all keys with h(k) =i

Collisions with probing

• Idea: do not use extra space, use only the hash table

• Idea: when inserting key k, if slot h(k) is full, then try some other slots in the table until
finding one that is empty

• the set of slots tried for key k is called the probing sequence of k

• Linear probing:
• if slot h(k) is full, try next, try next, ...
• probing sequence: h(k), h(k) + 1, h(k) + 2, ...

• insert(k)
• search(k)
• delete(k)

• Example: N = 10, h(k) = k % 10, collisions with linear probing
• insert 1, 7, 4, 13, 23, 25, 25

Linear probing

• Notation: alpha = n/N (load factor of the hash table)

• In general performance of probing degrades inversely proportional with the load of the hash
• for a sparse table (small alpha) we expect most searches to find an empty position within a few

probes
• for a nearly full table (alpha close to 1) a search could require a large number of probess

• It is known that: Under certain randomness assumption it can be shown that the average number of
probes examined when searching for key k in a hash table with linear probing is 1/2 (1 + 1/(1 - alpha))

• alpha = 0: 1 probe
• alpha = 1/2: 1.5 probes (half-full)
• alpha= 2/3: 2 probes (2/3 full)
• alpha = 9/10: 5.5 probes

• Collisions with probing: cannot insert more than N items in the table
• need to guess n ahead
• if at any point n is > N, need to re-allocate a new hash table, and re-hash everything. Expensive!

Linear probing

• Pros:
• space efficiency

• Cons:
• need to guess n correctly and set N > n
• if alpha gets large ==> high penalty

• the table is resized and and all objects re-inserted into the new table

• Rule of thumb: good performance with probing if alpha stays less than 2/3.

Double hashing

• Empirically linear hashing introduces a phenomenon called clustering:
• insertion of one key can increase the time for other keys with other hash values
• groups of keys clustered together in the table

• Double hashing:
• instead of examining every successive position, use a second hash function to get a fixed

increment
• probing sequence: h1(k), h1(k) + h2(k), h1(k) + 2h2(k), h1(k) + 3h2(k),...

• Chose h2 so that it never evaluates to 0 for any key
• would give an infinite loop on first collision

• Rule of thumb:
• chose h2(k) relatively prime to N

• Performance:
• double hashing and linear hashing have the same performance for sparse tables
• empirically double hashing eliminates clustering
• we can allow the table to become more full with double hashing than with linear hashing

before performance degrades

Hashing

• Choosing h and N

• Goal: distribute the keys evenly throughout the hashtable
• n is usually unknown

• If n > N, then the best one can hope for is that each bucket has O(n/N) elements
• need a good hash function
• search, insert, delete in O(n/N) time

• If n <= N, then the best one can hope for is that each bucket has O(1) elements
• need a good hash function
• search, insert, delete in O(1) time

• If N is large==> less collisions and easier for the hash function to perform well
• Best: if you can guess n beforehand, chose N order of n

• no space waste

Hash functions

• How to define a good hash function?

• An ideal has function approximates a random function: for each input element, every output
should be in some sense equally likely

• This is called “universal hashing”

• In general impossible to guarantee

• Every hash function has a worst-case scenario where all elements map to the same entry

• Hashing = transforming a key to an integer
• There exists a set of good heuristics

Hashing strategies

• Summing components
• let the binary representation of key k = <x0,x1,x2,...,xk-1>

• use all bits of k when computing the hash code of k

• sum the high-order bits with the low-order bits

• (int) <x0,x1,x2,.x31> + (int)<x32,.,xk-1>

• e.g. String s;
• sum the integer representation of each character
• (int)s[0] + (int)s[1] + (int) s[2] + ...

Hashing strategies

• summation is not a good choice for strings/character arrays
• e.g. s1 = “temp10” and s2 = “temp01” collide
• e.g. “stop”, “tops”, “pots”, “spot” collide

• Polynomial hash codes
• k = <x0,x1,x2,...,xk-1>
• take into consideration the position of x[i]

• chose a number a >0 (a !=1)
• h(k) = x0ak-1 + x1ak-2 + ...+xk-2a + xk-1

• experimentally, a = 33, 37, 39, 41 are good choices when working with English words
• produce less than 7 collision for 50,000 words!!!
• Java hashCode for Strings uses one of these constants

Hashing strategies

• Need to take into account the size of the table
• Modular hashing

• h(k) = i mod N

• If take N to be a prime number, this helps the spread out the hashed values

• If N is not prime, there is a higher likelihood that patterns in the distribution of the input keys
will be repeated in the distribution of the hash values

• e.g. keys = {200, 205, 210, 215, 220, ... 600}
• N = 100

• each hash code will collide with 3 others

• N = 101
• no collisions

Hashing strategies

• Combine modular and multiplicative:
• h(k) = a k % N
• chose a = random value in [0,1]
• advantage: the value of N is not critical and need not be prime

• empirically:
• a popular choice is a = 0.618033 (the golden ratio)
• chose N = power of 2

Hashing strategies

• Universal hashing

• chose N prime
• chose p a prime number larger than N
• chose a, b at random from {0,1,...p-1}

• h(k) = ((a k + b) mod p) mod N

• This gets very close to throwing the keys into the hash table randomly (two keys collide with
probability 1/N), and thus leads to as few collisions as possible, on the average.

• Many other variations of these have been studied, particularly has functions that can be
implemented with efficient machine instructions such as shifting

Java.util.Hashtable

• This class implements a hash table, which maps keys to values. Any non-null object can be used as
a key or as a value.

• java.lang.Object
• java.util.Dictionary
• java.util.Hashtable

• implements Map

• [check out Java docs]
• implements a Map with linear probing; uses .75 as maximal load factor, and rehashes every time

the table gets fuller

• Example

//create a hashtable of <key=string, value=number> pairs
Hashtable numbers = new Hashtable();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));

 //retrieve a string
Integer n = (Integer)numbers.get("two");
if (n != null) {
 System.out.println("two = " + n);
}

https://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
https://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
https://java.sun.com/j2se/1.4.2/docs/api/java/util/Dictionary.html
https://java.sun.com/j2se/1.4.2/docs/api/java/util/Dictionary.html

Hash functions in Java

• The generic Object class comes with a default hashCode() method that maps an Object to an integer
• int hashCode()

• Inherited by every Object
• The default hashCode() returns the address of the Object’s location in memory

• too generic
• poor choice for most situations

• Typically you want to override it
• e.g. class String

• overrides Strng.hashCode() with a hash function that works well on Strings

Perspective

• Best hashing method depends on application

• Probing is the method of choice if n can be guessed
• Linear probing is fastest if table is sparse
• Double hashing makes most efficient use of memory as it allows the table to become more full,

but requires extra time to to compute a second hash function
• rule of thumb: load factor < .66

• Chaining is easiest to implement and does not need guessing n
• rule of thumb: load factor < .9 for O(1) performance, but not vital

• Hashing can provide better performance than binary search trees if the keys are sufficiently random
so that a good hash function can be developed

• when hashing works, better use hashing than BST
• However

• Hashing does not guarantee worst-case performance
• Binary search trees support a wider range of operations

Exercises

• What is the worst-case running time for inserting n key-value pairs into an initially empty map that
is implemented with a list?

• Describe how to use a map to implement the basic ops in a dictionary ADT, assuming that the user
does not attempt to insert entries with the same key

• Describe how an ordered list implemented as a doubly linked list could be used to implement the
map ADT.

• Draw the 11-entry hash that results from using the hash function h(i) = (2i+5) mod 11 to hash keys
12, 44, 13, 88, 23, 94, 11, 39, 20, 16, 5.

• (a) Assume collisions are handled by chaining.
• (b) Assume collisions are handled by linear probing.
• (c) Assume collisions are handled with double hashing, with the secondary hash function h’(k)

= 7 - (k mod 7).
• Show the result of rehashing this table in a table of size 19, using teh new hasah function h(k) = 2k

mod 19.

• Think of a reason that you would not use a hash table to implement a dictionary.

