Exercises

(1) Suppose you are comparing implementations of insertion sort and selection sort on the same machine. For inputs of size n, insertion sort runs in $8 n^{2}+20 n$ instructions, while selection sort runs in $10 n^{2}$. For which values of n does insertion sort beat selection sort?
(2) Assme you have an algorithm that runs in n time. What is the largest size n that can be solved by this algorithm in 1 day? Assume a 1 GHz processor (therefore one instruction takes 10^{-9} seconds).
(3) Same as above, when the algorithm runs in n^{2} instructions.
(4) Same as above, when the algorithm runs in 2^{n} instructions.
(5) Order the following expressions by their assymptotic growth (fastest to slowest):

$$
2^{n}, n^{3}, 3^{n}, n \lg n, n^{2}, n^{2} \lg n
$$

Justify your answer. That is, if your final order is

$$
a, b, c, d
$$

you need to show that $a=O(b), b=O(c)$ and $c=O(d)$. You can use either the definition of $O()$ or limits.
(6) Find an asymptotic tight bound for the following expressions:
(a) $3 n+\lg n+n \lg n+27$
(b) $10000 n+3 n^{2}$
(c) $n^{3}+2^{n}$
(d) $n^{2}+3 n^{3}+n \lg n$
(7) What is order of growth of the running time of the following function, which reverses a string s of length n ? You may want to think whether concatenating two strings $s_{1}+s_{2}$ is a constant time operation (or not).

```
public static String reverse(String s) {
    int N = s.length();
    String reverse = "";
    for (int i = 0; i < N; i++)
        reverse = s.charAt(i) + reverse;
    return reverse;
}
```

(8) Give a $\Theta(n)$ algorithm for reversing a string.

